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ABSTRACT 
This report describes the underlying theory behind the DNV property system. This system performs a range of functions to satisfy the 
needs of the process models.  

 
For thermodynamic properties, there are two distinct systems available, both of which are documented here. The older system PRP 
(always used by programs PHAST / SAFETI up to version 6.4) treats mixtures as behaving as a pure component typically with ‘averaged’ 

properties. More recently an alternative system XPRP (can be used by some models from programs PHAST / SAFETI 6.5) has been 
developed that handles multi-component mixtures in a more rigorous manner, including equilibrium calculations.  
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1 INTRODUCTION 

1.1 General introduction 
 
The Property System has to perform a range of functions to satisfy the needs of the process models: 

• The retrieval of pure component constant properties 

• The retrieval of pure component equation coefficients for simple temperature-dependent properties, and the 
calculation of point property values from these coefficients 

• The calculation of mixture properties from the above using mixing rules 

• The calculation of thermodynamic properties of pure components and mixtures 

• The solution of flash calculations  

 
Many important properties cannot be obtained from a database, or from a simple relationship with temperature. Examples 
include density, enthalpy, and entropy, which are very important when predicting the behaviour of the material when it 
changes state (e.g. from pressure P1 to pressure P2 or from temperature T1 to temperature T2). 
 
These properties are obtained from fundamental definitions, applied to an equation of state, and are known as “derived 
properties”. This approach is applied to pure components (i.e. to process streams which contain a single material), and 
also to mixtures (i.e. to multi-component process streams). 
 
There are currently two separate property systems: a legacy system (PRP) that was developed some years ago and has 
been used in many versions of PHAST and SAFETI; and a new system (XPRP) that has recently been developed and 
that introduces rigorous modelling of multi-component streams: 

1. The older, “legacy” system (PRP) handles mixtures in a fairly simplistic manner, largely due to the fact that it 
does not perform flash calculations with any kind of rigour. The mixture is essentially treated as a “pseudo-
component” in that its phase is determined solely by reference to a “saturated vapour pressure” that is derived 
using simple mixing rules on the component vapour pressures.  

2. The newer system (PRP) includes rigorous modelling of multi-component phase equilibrium and thermodynamics. 
This new system will supersede the old system. This document described the new property system XPRP, while 
highlighting any differences with the old property system where applicable. 

 
Although both systems utilise similar methods for some thermodynamic properties (e.g. equations of state for density, 
enthalpy and entropy calculations), the fact that the differing flash calculations will yield differing temperatures and phase 
compositions means that the results obtained may differ substantially. 
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1.2 Overview of property system 
 
The structure of the property system is shown in Figure 1 below. 
 
 

 
 

Figure 1: The Structure of the Property System 
 
 
The property calculations can be called by any “client” programs. Currently, this includes: 

1. The generic Excel spreadsheet interface for running consequence models (e.g. as used in (PHAST/SAFETI). 
This also includes spreadsheets for testing flash problems and mixture properties available from the flash module 
and the properties module. 

2. The PHAST / SAFETI property module 
This program has user interface facilities for performing some flash calculations by calling the flash module, 
calculating multi-component and single-component properties by calling the Properties module and also updating the 
data files. 

3. The PHAST / SAFETI Consequence Models 
The consequence models obtain property data for modelling discharge, pool vaporisation, droplet model, dispersion 
and scenario definition.  

4. Other DNV programs such as Neptune and possibly other programs in the future 
 
 
The three main calculation modules in the system are as follows: 

1. The phase equilibrium algorithm / flash module 
 
This performs 2-phase (vapour-liquid) equilibrium calculations using mixture thermodynamic properties supplied by 
the properties module. The water phase can be treated in simplified manner as a completely separated phase. The 
flash module can perform five types of flash calculation: 

a. Isothermal flash or flash at specified temperature T and pressure P.  
This is a very useful calculation for a variety of situations. It can be used in phase identification / scenario definition 
before a consequence calculation. Calculation of mixed-phase stream thermodynamic properties (enthalpies, 
entropies) is dependent on an isothermal flash. 

b. Constant vapour fraction flash or flash at specified P & Vapour fraction () or T & . 
This includes dew / bubble pressures and temperatures. This can also be very useful in phase identification 
/scenario identification and in a variety of consequence models. 

Client program 
(e.g. PHAST/SAFETI property module, 

consequence models, generic spreadsheet)

XPRP property system

Calculate phase equilibrium 
Flash options: isothermal, constant vapour 

fraction, isenthalpic, isentropic, constant energy

Pure-component property data
Database with DIPPR data and toxic/flammable data

Derived thermodynamic properties

Calculation from equation of state of: densities, enthalpies, entropies, fugacity 

coefficients, specific heats, isothermal compressibility, coefficient of thermal 

expansion

Calculations available for pure components, mixtures, mixtures with separated 

water, acid association

Calculate properties

Database properties for pure components

Retrieval of constant properties: molecular weight, critical temperature, etc. 

Calculation of temperature-dependent properties: vapour pressure, ideal gas heat 

capacities etc. from DIPPR equations



 

Theory | Property System |  Page 6 

  

c. Isentropic flash or flash at specified entropy S and pressure P. 
This is a reversible adiabatic flash and it can be used in situations usually approximated by a reversible process 
e.g. an orifice expansion between the bulk of the fluid and the vena contracta. 

d. Isenthalpic flash or flash at specified enthalpy and pressure. 
This is an irreversible adiabatic flash and it can be used in processes with high degree of irreversibility e.g. the 
discharge through a pipe (which involves considerable friction) can be modelled with an energy balance, which, 
in turn, can be converted to an equivalent enthalpy balance. This is only an example where the isenthalpic flash 
can be a useful function for the solution of problem but it is not implied that discharge problems can generally be 
reduced to phase equilibrium problems. 

e. Constant Energy flash or flash at specified energy E and pressure P. 
This flash is similar to an isenthalpic flash but the conserved quantity is not the enthalpy but the energy, i.e. the 
sum of the enthalpy (H) and the kinetic energy (0.5 u2). This flash has similar applications as the isenthalpic flash 
but it has the advantage that it avoids the assumption that the kinetic energy is negligible. The constant energy 
flash can be used in discharge modelling for the expansion from the stagnation point to the pipe orifice and 
possibly for the expansion from the pipe orifice to the atmosphere 
 

2. The properties module for pure components 

• Retrieval of pure component constants such as critical temperature or coefficients for the calculation of pure 
component temperature dependent properties from a data file. The source of the current data is the DIPPR 
database. 

• Calculation of pure component temperature dependent properties such as the ideal gas enthalpy or entropy 
(including one pressure dependent property: saturated vapour temperature) according to the database equations 

 

3. The properties module for derived thermodynamic properties 

• Calculation of mixture thermodynamic properties for the purposes of the phase equilibrium module. 

• Calculation of other properties (e.g. transport properties viscosity, thermal conductivity) using standard property 
mixing rules such as the ideal mixing rule or the Le Chatelier mixing rule. The mixture property interface can also 
be called by any other consequence model in addition to the phase equilibrium module.  

 
The following properties are of particular interest for the phase equilibrium calculations: 

• Mixture vapour and liquid enthalpies: Hv, HL, used extensively in discharge and dispersion modelling 

• Mixture vapour and liquid entropies: Sv, SL, used especially in discharge modelling 

• Mixture vapour and liquid phase densities: v, L, used throughout all consequence models 

• Vapour and liquid fugacity coefficients of each component i in the mixture: v,i, L,i ,used especially for the 
calculation of the equilibrium K-values 

• K-values of each component i in the mixture: 

 

)fraction  mole liquid (component

)fraction  mole vapour (component

i

i

i
x

y
K   

 

1.3 Multi-component modelling in consequence analysis 
 
A typical hazard analysis of a chemical process installation involves several hazardous materials/streams and often these 
streams are a mixture of two or more chemical substances. Modelling of the behaviour of the mixture requires calculation 
of mixture thermodynamic properties such as densities, enthalpies, entropies, fugacities and phase equilibrium conditions. 
 
Rigorous thermodynamics is a standard feature of models used in process plant design and process simulation. However, 
models used in hazard and risk assessment frequently make simplistic assumptions in order to avoid the use of rigorous 
multi-component thermodynamics. The “pseudo component” approach is often used and the mixture is assumed to have 
a constant composition throughout the model and to behave like a single component. The properties of the mixture are 
calculated from the component properties with a simple averaging equation. 
 
The error from a pseudo-component approach is difficult to predict but, generally, it varies according to: 

• the component volatility range 
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• the non-ideality of the mixture 

• the consequence model itself 

 
Two-phase discharge is an example of a calculation which can be strongly affected by inaccurate thermodynamics. The 
actual compositions and properties of the two phases can be very different from the ones predicted from the simple 
pseudo-component approach, affecting the accuracy of the release flow rate calculation. TNO (1997) report a comparison 
between a multi-component droplet model for a mixture of ammonia-water and the equivalent single component model of 
Vesala and Kukkonen (1992).  
 
The drying time of a binary droplet was a reduced by a factor of 1.5 compared to the single component ammonia droplet.  
A fuller discussion of MC thermodynamics as implemented in the UDM dispersion calculations can be found in Section 
the UDM thermodynamics model (THRM) theory and verification documentation. 
 
A common justification of the use of simplified thermodynamics is that hazard and risk assessment do not require the 
same accuracy as process design. In addition to that, the integration of rigorous thermodynamics might affect the speed 
and robustness of the consequence models and significant investment is required to avoid these problems and keep this 
development under control. However, the industry often makes important decisions based on the results of consequence 
models and since the recent modelling technology has overcome many of the technical difficulties, this should be made 
available to the users of consequence models because of the resulting overall benefit: improvement of the accuracy of 
the risk assessment results. 
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2. PROPERTIES OF PURE COMPONENTS OBTAINED FROM DATABASE 

2.1 Properties of pure components directly obtained from database1 
 
There is a database of simple properties for pure components. Some of these properties are constant, while others are 
dependent on the temperature. The property system retrieves the constant properties and the coefficients of the equations 
describing the temperature-dependent properties, and calculates the temperature-dependent properties at the specified 
temperature. A complete documentation of the property database is provided in separate documentation.  
 
Many of the constant properties and coefficients of the temperature-dependent properties have values that are taken from 
the DIPPR® database. A subset of these data is given in Table 1 and Table 2. The property system uses a range of 
DIPPR® equations to calculate many temperature-dependent properties. Each equation expresses a different relationship 
between a property and the temperature. See 0 for a list of DIPPR equations.  
 
 

Property Units 

Molecular Weight kg/kmol 

Critical Temperature 
K 

Critical Pressure N/m2 

Melting Point K 

Normal Boiling Point K 

Heat Of Combustion J/kmol 

Flash point K 

Table 1: DIPPR® constant properties 
 

Property Units 

Liquid Density at Atmospheric Pressure 
kmol/m3 2 

Saturated Vapour Pressure N/m2 

Ideal Liquid Heat Capacity J/kmol.K 2 

Ideal Gas Heat Capacity J/kmol.K 2 

Second Virial Coefficient 
~ 

Liquid Viscosity N.s/m2 

Vapour Viscosity N.s/m2 

Liquid Thermal Conductivity W/m.K 

Vapour Thermal Conductivity W/m.K 

Liquid Surface Tension N/m 

Ideal Gas Enthalpy J/kmol 2, 3 

Table 2: DIPPR® temperature-dependent properties 
  

                                                        
1
 DOC. This needs further modification to include only those properties for relevance of XPRP theory 

2
 The equation coefficients calculate the property on a molar basis. This may be converted to mass basis before being returned if requested. 

3
 Calculated by integration of the Ideal Gas Heat Capacity equation 
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Table 3 includes a subset of a list of simple properties that are used in the system but are not derived from DIPPR.  These 
mainly relate to the flammable or toxic properties of a material.  Discussion of the source for these data is included in the 
‘Property Database’ model documentation. 
 

Property Units 

Lower Flammable Limit Mole Fraction 

Upper Flammable Limit Mole Fraction 

Combustion Ct* Mole Fraction 

Combustion At* Mole Fraction 

Flammable/Toxic Flag -2 =Neither (Inert), -1 =Toxic, 0 =Both, 1 
=Flammable 

ERPG 1 Mole Fraction 

ERPG 2 Mole Fraction 

ERPG 3 Mole Fraction 

IDLH Concentration Mole Fraction 

STEL Concentration Mole Fraction 

Toxic Property N  

Toxic Property A  

Toxic Property B  

Reactivity With Atmosphere 0 =Not Strongly Reactive,  
1 =Strongly Reactive, 
2 =HF Only 

Material Produced By Reaction with 
Atmosphere 

 

TNT Explosion Efficiency  

Human Response Coefficient 1  

Human Response Coefficient 2  

Debilitation Factor Change 1  

Debilitation Factor Change 2  

Flame Type (Luminous/Smoky flame) 0 =Luminous, 1 =Smoky, 2 = general 

Maximum Surface Emissive Power kW/m2 

Emissive Power Length Scale M 

NFPA Flammable4  

NFPA Toxic4  

NFPA Reactivity4  

Dangerous Dose Concentration in ppm time in minutes 

Laminar burning velocity m/s 

Immediate ignition category  

 
Table 3: Flammable and toxic properties 

 

2.2 Combustion properties derived from database 
 
The property system5 currently allows the calculation of two combustion coefficients, defined by  
 

 

airofmolesfuelofmoles

fuelofmoles
Ct


  = 

 AIR1

1
 

( 1 ) 

 
 

productscombustionofmoles

airofmolesfuelofmoles
At


 = 

 
 PROD

AIR]1
 

( 2 ) 

 
Here complete combustion is assumed in the above calculation; [AIR] is the moles of air required per mole of material for 
complete combustion, and [PROD] is the moles of product produced per mole of material.  The combustion coefficient Ct 
is the stoichiometric concentration of the combustible fuel in air, while the combustion coefficient At is the ratio of moles 
before reaction to the moles after reaction. 

                                                        
4
 DOC.  The NFPA properties are not in the property database and not used, but are defined in the property system.  These properties were included with a view to 

future integration with ORBIT. 
5
 IMPROVE. This logic is currently part of the database-generation program, but should be moved in the future to XPRP. 
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The air is assumed to consist of yN2
air mole fraction N2 (yN2

air ≈ 0.79) and  yO2
air mole fraction oxygen (yO2

air = 1- yN2
air ≈ 

0.21)6. Assuming complete combustion of the fuel into combustion oxide, the reaction is as follows: 
 

        222

1

2222 1}.{)]1([1 NyCoxidecombCyANyOyCfuelC air

Ntt

air

Nt

air

N

air

Ott 
   ( 3 ) 

 
Thus Ct mole of fuel reacts with [1-Ct] moles of air, to form as combustion products [At

-1 – yN2
air (1-Ct)] mole of combustion 

oxide and yN2
air [1-Ct] moles of nitrogen N2. 

 
The molecular formula of the fuel is obtained from the DIPPR database. This assumes the fuel molecule to consist of 
carbon (C), oxygen (O), hydrogen (H), sulphur (S), phosphorous (P), and halogens (X = bromine Br, chlorine Cl, fluorine 
F, and/or iodine I), Silicone (Si) and Boron (B). Thus the following reaction is assumed7, 
 

 









 2

2

2

21srqpnmlkj BSiXPNSOHC N
y

y
OC

air

O

air

N
   jCO2 + ½(k - q)H2O + mSO2 + 

air

O

air

N

y

y

2

2
C1N2 + nNO + ½pP2O5 + qHX +rSiO2 + (s/2)B2O3 

 
( 4 ) 

 
where the number of moles C1 of O2 required, can be obtained by performing a stoichiometric balance on oxygen: 
 

 C1 = j + ¼(k - q) + m + 5/4p - ½l + r + ¾s + ½n  ( 5 ) 
 
The values of AT and CT can be obtained by: 
 

 

AT = [1 + )1(
2

2

air

O

air

N

y

y
 4.774C1] / [ j + ½(k - q) + m + 

air

O

air

N

y

y

2

2
C1 + ½p + q + r + ½s + n]  

( 6 ) 

 

 

CT = 1 / [1 + )1(
2

2

air

O

air

N

y

y
 C1]  

( 7 ) 

 
 

                                                        
6
 The code currently assumes yN2

air
 / yO2

air
 = 3.774, which corresponds to yN2

air 
≈ 0.79 

7
 This reaction assumes the conversion of the N atoms in the fuel molecule for 100% to combust to NO, and the N2 present in the air to be an inert. This is in line with 

page 27-27 in Perry and Green (1997), which states that 95% of the fuel-bound nitrogen converts to NO. Perry indicates that the conversion of air nitrogen to 
NO increases with the temperature. Page 1-94 of the SFPE handbook indicates that even at 2300K the percent of conversion of N2 to NO is small (0.3). 



 

Theory | Property System |  Page 11 

  

3. PROPERTIES OBTAINED FROM MULTI-COMPONENT PROPERTY 
SYSTEM 

 
The new property system (XPRP) has recently been developed and introduces rigorous modelling of multi-component 
streams. This section describes the new system. The new system also (for now) includes the properties and methods for 
the old system. This section describes the new property system XPRP, while highlighting any differences with the old 
property system PRP where applicable.   

3.1 Overview of calculation methods for multi-component phase equilibrium 
 
The development of calculation methods for multi-component fluid phase equilibrium has been driven largely by the 
process design industry. Historically, these developments followed different branches due to the diverse nature of the 
types of mixture needing to be modelled. 

• In oil and gas processing, the components are typically hydrocarbons and other light gases (e.g. Nitrogen, Carbon 
Dioxide etc). Because these components are largely non-polar (or only slightly polar), and the fact that the processing 
frequently employs high pressures and/or temperatures, any deviations from ideal behaviour are largely associated 
with volumetric effects. The conventional way of modelling such systems therefore uses equations of state which 
attempt to model the P-V-T behaviour of the fluid. 

• In the chemical industry, the components involved are often highly polar resulting in large interaction energies 
between molecules. The deviations from ideal behaviour are dominated by these interactions, and so the approach 
to modelling these systems was through the free energy or activity coefficient models. 

 
The main advantage of the good equations of state is that they allow a uniform approach in mixture thermodynamic 
modelling and predict many properties for a number of possible phases (at least one vapour and one liquid phase), for 
multiple components and for a wide range of pressures, temperatures and compositions with a minimum number of mixture 
parameters. The main disadvantage is their inability to handle polar mixtures. 
 
By contrast, activity coefficient models deal only with the liquid phase and are generally applicable within a limited range 
of pressure and temperatures. They can be made very accurate for even the most highly polar mixtures by using mixture 
interaction parameters, but are of limited value without them. 
 
Because of the above, there has been a drive to extend the equations of state models to deal with polar mixtures through 
more complex mixing rules or combined free energy models. 

3.1.1  Equation of state 
 
The literature on equations of state is vast and it is outside the scope of this work to review these models. There are a 
number of text books describing the more standard and established equations (Reid et al, 1987, Walas, 1987) and a 
number of published paper reviews with model comparisons such as Martin (1979), Trebble and Bishnoi (1987a&b), 
Tsonopoulos and Heidman (1986), Vilczek and Vera (1987), Anderko (1990), Solorzano-Zavala et al (1996), Orbey and 
Sandler (1996). The review by Anderko (1990) is very comprehensive and covers the different types of equations. 

Cubic Equations of State 
 
The cubic equations of state are the most favoured by the industry for mixture calculations especially when there are very 
few experimental data available. Cubic equations are semi-empirical equations and they have a number of advantages: 

• They are very flexible and they can easily model the fluid Pressure-Volume-Temperature (PVT) behaviour in both the 
liquid and the vapour phase for a wide range of temperatures, pressures and densities; 

• They are quite easy to solve and there is always an analytical solution; 

• They can be used to calculate simultaneously PVT properties (density), fugacity coefficients and other thermodynamic 
property (enthalpy, entropy, heat capacity) departures from the ideal behaviour; 

• They usually have few parameters and do not require very extensive experimental data. Some of the simpler cubic 
equations (such as Soave(1972) and Peng Robinson(1976)) can even be used without any mixture data (or binary 
parameters) in some cases. Critical temperature and critical pressure data are the main requirement and most of the 
equations also use the acentric factor derived from vapour pressure data; 

• Cubic equations usually combine easily component data to calculate mixture data; 

• For mixtures, non-cubic equations are not generally more accurate than the cubic ones. 
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The cubic equations of state (and equations of state in general) had originally some limitations. The main limitation is the 
inability to cope with polar mixtures or mixtures of very dissimilar components. Research is still active in this area and 
some of the limitations are progressively being overcome. 

The Development of the Equations of State 
 
The Van der Waals (1873) equation of state was the first significant improvement over the ideal gas law and it was mainly 
used for PVT calculations. 
 
The next breakthrough in this area was the Redlich-Kwong (1949) equation which was accurate enough for engineering 
calculations of the vapour phase fugacity coefficients but it did not model the material vapour pressure equation. 
 

Soave (1972) modified the Redlich Kwong equation by fitting the -parameter of the equation to vapour pressure data 
using a generic (material-independent) polynomial. This modification allowed use of the equation of state for calculating 
fugacity coefficients for both the vapour and the liquid phase. The same equation can be used for calculating several 
thermodynamic properties of the vapour and liquid phase for pure materials and multi-component non-polar mixtures. 
 
The Peng Robinson (1976) is a modification of the Soave equation presumed to improve among other things the 
calculation of liquid densities. The two equations are relatively simple and can be used nearly interchangeably in phase 
equilibrium algorithms. They are fairly accurate for modelling hydrocarbon mixtures and they can even be used without 
fitted binary parameters (setting Cij=1) for mixtures of symmetric (not dissimilar) materials. 
 
The main limitation of Soave-Redlich-Kwong (SRK) and of Peng-Robinson (PR) is modelling of medium to highly polar 
mixtures and also modelling of mixtures of dissimilar materials (e.g. mixtures of hydrocarbons with H2 or N2) materials. 
Use of binary interaction parameters and other small improvements to these equations, such as those implemented in our 
program and described in the next section, can make possible the modelling of mixtures with H2 , N2 and other light 
components. However it was mainly the simplicity and universal acceptability of these 2 equations that counted in favour 
of their selection for this first stage of implementation of multi-component thermodynamics in our consequence models. 
 
Since the mid-seventies, work has continued to improve the equations so that they can fit simultaneously and adequately 
several thermodynamic properties of the pure material: vapour pressures, vapour densities, liquid densities. Better 

modelling of these properties requires that the temperature dependence of the -parameter is improved. A number of 
authors including Schmidt and Wenzel (1980), Heyen (1980), Patel and Teja (1982), Adachi et al (1983), Mathias and 
Copeman (1983), Soave (1984), Stryjek and Vera (1986), Melhem et al(1989), Sugie et al(1989), Yu and Lu (1987) 

proposed various modifications of the temperature dependency of the -parameter, which aimed to improve the vapour 
pressure representation in general or for specific components (H2 ). Other modifications of the form of the equation aimed 
to improve the consistency of representation of liquid densities and the critical compressibility factor e.g. Harmens and 
Knapp (1980), Peneloux (1982), Trebble an Bishnoi (1987a&b) 
 
Work has also continued to improve the modelling of polar mixtures, which is described in more detail below. 

3.1.2  Activity coefficient models 
 
The most commonly used activity coefficient models are: 

• The Wilson Equation ( Wilson (1964) ) – Utilises two adjustable interaction parameters for each binary pair in the 
mixture, and also uses the partial liquid molar volumes. 

• The Non-Random-Two-Liquid Equation (NRTL) (Renon and Prausnitz 1968) – Utilises three adjustable interaction 
parameters for each binary pair in the mixture, although one of the parameters (the ‘alpha’ parameter) is sometimes 
fixed at a pre-defined value. 

• The Unified Quasi-Chemical Equation (UNIQUAC) – Utilises two adjustable interaction parameters for each binary 
pair in the mixture, and also uses pure component parameters representing the Van der Waals volume and surface 
area. 

Of the three models, Wilson is the only one that is incapable of describing liquid-liquid phase equilibrium. 
Other than this, the choice of model seems frequently to be driven by user preference, or by the availability 
of suitable interaction parameters. 

In the absence of interaction parameters, the models effectively revert to ideal (Raoult’s Law) behaviour. 
There is therefore a high data requirement, although this can be mitigated to a degree by using a standard 
compilation such as the Dechema Chemistry Data Series (University of Dortmund). 

Fredenslund et al. (Technical University of Denmark) produced the UNIFAC Equation (Unified Functional 
Group Activity Coefficient) in order to reduce this data load. This utilises the same equation form as 
UNIQUAC, but the compositions and parameters are expressed in terms of Functional Groups (e.g. -CH2 , 
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-C=0 ). The published interaction parameters between the functional groups have been determined by 
regression of a huge volume of data on a wide range of mixtures in order that they can be used in a 
predictive way for other substances. 

3.1.3  Approaches to modelling of polar mixtures using equations of state 
 
The effort in this area has focused mainly on the improvement of mixing rules. The standard SRK and PR equations use 
the classical Van der Waals mixing rules, which are typically enhanced to include one binary interaction parameter, but 
the Van der Waals mixing rules appear to be inadequate for the modelling of polar mixtures. Three other types of mixing 
rules for cubic equations of state have been investigated during the last few years: 

1. Rules based on Excess Gibbs Free Energy GE models  
 
These are equivalent to activity coefficient models. The most widely used GE model is NRTL (Non-Random-Two-
Liquid, Renon and Prausnitz, 1968) but other models such as Wilson (1964) are commonly used. 
 
The first and best known GE -based mixing rule was proposed by Huron and Vidal (1979). 
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( 8 ) 

where: 
 
a and b are the cubic equation parameters 

Eg  is an Excess Gibbs energy function 
L is a constant. 
 
Other authors such as Soave (1984), Kurihara et al (1987), Mollerup (1986), Gupte (1986), Heidemann and Kokal 
(1990), Boukouvalas et al(1994) developed further the ideas of GE - based mixing rules. Wong and Sandler (1992) 
proposed a more sophisticated rule producing improved overall results (Solorzano-Zavala et al, 1996).  
 
Typically the GE -based rules require 2-3 binary parameters, although some of the models can use existing activity 
coefficient parameters derived over a limited temperature range. The MHV2 (Modified Huron Vidal 2nd Order) equation 
(Michelsen) can be used with any of the liquid phase activity coefficient models (Wilson, NRTL, etc.) and has been 
shown to dramatically improve the prediction of high pressure vapour-liquid equilibrium results from interaction 
parameters derived at atmospheric pressure. 
 
The main advantages of these mixing rules are that they can model polar mixtures and combine the flexibility of the 
activity coefficient models (in terms of fitting experimental phase equilibrium data) and the wide temperature and 
pressure range of validity of the cubic equations of state. The disadvantages are that the GE rules require more 
computing time than the simple mixing rules, they predict incorrect composition dependence of the Virial coefficients 
and they retain some other weaknesses of the activity coefficient models (non-unique adjustable parameters) and 
sometimes they predict an incorrect phase split. 

2. Simple composition-dependent mixing rules 
The most well-known mixing rule is the one by Panagiotopoulos and Reid (1986), where the mixture a -parameter 

of the equation of state is represented by a simple function of the mole fractions: 
 

 
  )](1[ jiijiijjiji kkxkaaxxa  

 

( 9 ) 

This rule has 2 binary parameters. 
 
Stryjek and Vera (1986) and Melhem (1979) have proposed similar mixing rules. Kabadi and Danner (1985) proposed 
a composition-dependent mixing rule designed for hydrocarbon–water mixtures. 
 
The simple composition-dependent mixing rules are as flexible as the GE-based rules and they are simple to use. 
They have the same weaknesses as the GE-based rules and they may be less accurate than the GE-rules for highly 
non-ideal systems. Michelsen and Kistenmacher (1990) have highlighted some internal inconsistencies of some of 
these rules: lack of invariance (results change in case of material sub-division to pseudo-components) and the 
“dilution effect” (anomaly due to the fact that the calculation involves multiplication of 3 mole fractions, i.e. cubed mole 
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fraction). Nevertheless, these rules have been relatively popular for modelling polar mixtures because of their 
simplicity. 

3. Density dependent mixing rules 
 
These rules were invented to allow a thermodynamically consistent representation of the low and high-density regions. 
These rules typically require 2-3 temperature dependent parameters. The rules by Mollerup (1981), Whiting and 
Prausnitz (1982), Luedecke and Prausnitz (1985) and Wilczel-Vera and Vera (1987) are examples of this rule 
category. These rules allow a small improvement over the classical mixing rules but they introduce an additional 
complexity and there are doubts if this is worthwhile. 

3.1.4  Summary 
 
There are various possibilities of further expansion of the capabilities of the thermodynamic model options in our program. 
However at this first stage, the SRK and PR equations allow a reasonable modelling of non-polar and slightly polar 
mixtures for consequence analysis purposes.  
 
In the near future, for handling strongly polar mixtures at low to moderate pressures, the NRTL/Wilson/UNIQUAC 
equations should be implemented because of the relative abundance of interaction parameter data in the literature. 
 
Longer term, if there is a strong demand for equations of state for polar mixtures in the consequence analysis area, a 
simple composition-dependent mixing rule such as the one by Panagiotopoulos and Reid (1986) or the MHV2 method 
should be considered. 
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3.2 Calculating simple properties for a mixture 
 
When modelling a mixture, the program calculates the values of these simple properties as a composition-based average of 
the base properties of the individual components. A number of choices for the averaging method, or mixing rule, are available. 
For constant properties, the mixing rules are applied directly to the property values. For temperature-dependent properties, 
the mixing rules are applied to the values obtained from the equation for each of the components in the mixture at the specified 
temperature. 

3.2.1  Available mixing rules 
 
General purpose rules 
 
Mixture properties are calculated according to mixing rules which combine the properties of each of the individual components. 
The rules are empirical and the program allows you to choose between them to obtain the best possible prediction of mixture 
properties.  
 
Ideal mixing rules take no account of the interaction between the components. Non-ideal mixing rules take account of the 
attractions or repulsions between pairs of components expressed by binary interaction coefficients. Three are two forms 
of rule for ideal mixing (ideal and Le Chatelier) and one form of non-ideal mixing: non-ideal. The equations used in each 
rule are given in  
Table 48: 
 
 

Ideal Mixing Le Chatelier's Mixing Rule Non-ideal Mixing 
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where: 
 
Qi is the pure component property value (at the specified temperature if relevant) 
Qm is the mixture property value 
yi is the mass or mole fraction 
cij is the binary interaction coefficient 
N is the number of components in mixture 

 
Table 4: Mixing rules for simple properties 

 
Max and min values 
Some properties are ‘mixed’ by simply taking the maximum or minimum value from the individual component values. 
 
Luminous smoky flame method 
The component value of this property is either less than or equal to zero (luminous) or greater than zero (smoky). The 
mixing rule sums the masses of luminous and smoky components in the mixture and returns 1.0 if the smoky components 
are heavier and 0.0 if the luminous components are heavier.  However if any of the components is of flame type ‘general’, 
then so will be the mixture. 
 
Flammable/Toxic flag mixing 
To determine whether a mixture is flammable, toxic, both or neither the component  Flammable/Toxic flags are first ‘mixed’ 
as shown in the following table to give a preliminary value: 
 
 
  

                                                        
8
Non-ideal mixing is not supported in the new property system.  In the old property system there is in fact a single set of binary interaction coefficients for a mixture, and 

these appear to have been used in different contexts – for these simple properties and in equation of state methods for thermodynamic properties.  However, by 
default no properties used non-ideal mixing and therefore these would have not been used. 
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Component values Mixture result 

No toxic, no flammable, no both (only inert)  Inert (-2) 

No toxic, no both, some flammable Flammable(1) 

No flammable, no both, some toxic Toxic(-1) 

Either at least one both or flammable and toxic 
components both present 

Both (0) 

 
Table 6. Mixing rule for the flammable/toxic flag 

 
If the mixture is found to be Flammable (or both) according to this preliminary determination, then the Lower Flammable 
Limit (LFL) is calculated from the LFLs of the flammable components using Le Chatelier’s mixing rule. If the resulting LFL 
is greater than 1.0 mole fraction, this indicates that the concentration of the flammable components is too small for the 
mixture to be flammable once further diluted with air, so the result is modified to make the mixture value non-flammable. 
 
Viscosity mixing rules 
For liquid and vapour viscosity two special mixing rules are applied, Kendall-Monroe for Liquid, and Kouzel for Vapour. 
These are formulated as follows9: 
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where: 
 
µi is the pure component viscosity (at the specified temperature if relevant) 
µ is the mixture viscosity 
yi is the mass or mole fraction 
N is the number of components in mixture 
Mwi is the component molecular weight 

 
Table 5: Mixing rules for viscosity 

 
Mixing rules for combustion coefficients 
Equations ( 1 ) and ( 2 ) can be rearranged and combined to give: 
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Therefore, for a mixture of N components: 
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( 13 ) 

 
 
 
Substituting these back into Equations ( 1 ) and ( 2 ), yields: 
 

                                                        
9
 In the old property system, viscosity could not be calculated for a mixture. 
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( 15 ) 

 
Thus Le Chatelier’s mixing rule can be used for Ct while a separate rule must be used for At. 
 
For a non-combustible components no air is required ( [AIR] = 0 ) and there is no change in moles during 

combustion( [PROD] = 1 ). Therefore, from Equations ( 1 ) and ( 2 ), 1iCt  and 1iAt . 

 
Flash point 
 
This mixing rule uses the minimum of component flash points10.  If flash point is unset for a flammable component, it is 
calculated from the normal boiling point (Bpt,i) 11: 
 

 2648.1870497.0 ,  ipti BF  
( 16 ) 

 
Immediate ignition category 
The maximum of component values (low, medium or high) is used.  Where a flammable component has no category 
specified, it is assumed to be ‘high’ for the purposes of the mixture calculation. 
 
Laminar burning velocity 
Calculated for mixtures as follows: 
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( 17 ) 

Where 
 

yi = Mole fraction of flammable component (i) (non-flammables are ignored) 

Vi  = Laminar burning velocity of flammable component (i) [m/s] 

n = Total number of components in the mixture 

 
  

                                                        
10

 IMPROVE A better method (suggested by Stuart Wilkinson) may be to assume the vapour will ignite once the concentration in the vapour space reaches the LFL, 

and that the mixture and air are in equilibrium.  Then the mixture flash point will be T such that LFLP = ΣyiPsat,i 
11

 A strong correlation exists between DIPPR flash points and normal boiling points exists with a straight line fit as given in the equation. 
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ERPG / NLIV 
There are three mixing rules available for mixture ERPG values (ERPG1, ERPG2 and ERPG3). These also apply to the 
Dutch equivalents, the Netherlands Intervention (NLIV) values (VRW, AGW and LBW). The three mixing rules are as 
follows: 
 

• “DNV”: 

              𝑬𝑹𝑷𝑮𝐦𝐢𝐱 = 𝐦𝐢𝐧{𝟏,  𝐦𝐢𝐧
𝒊=𝟏,..,𝑵;𝒚𝒊>𝟎

𝑬𝑹𝑷𝑮𝒊

𝒚𝒊
}               ( 18 ) 

 
 
 

• “mole Le Chatelier”: 
𝟏

𝑬𝑹𝑷𝑮𝐦𝐢𝐱
= ∑

𝒚𝒊

𝑬𝑹𝑷𝑮𝐢

𝑵
𝒊=𝟏            ( 19 ) 

 
 

 

• “min toxic component value”: 
 

𝑬𝑹𝑷𝑮𝐦𝐢𝐱 =    𝐦𝐢𝐧    
𝒊=𝟏,..,𝑵

𝑬𝑹𝑷𝑮𝒊                ( 20 ) 

 
 
Here ERPGi and ERPGmix is the ERPG value of mixture component i and the mixture ERPG value in unit fraction, 
respectively. Further yi is the mole fraction of component i in the mixture. Note that all three mixing rules only include 
component i in the calculations if all of the below holds true: 
 

• Component i is toxic. 

• The composition contribution of component i is positive; yi > 0. 

• The ERPG value of component i is positive; ERPGi > 0. 
 

3.2.2  Default mixing rules for a new mixture 
 
The choice of mixing-rules for the property calculation is not set globally for all of the mixtures in the database, or even for 
all of the properties for a given mixture. The new property system contains ‘template’ sets of methods for calculating 
properties, which use particular mixing rules for particular properties.  The mixing rule should account for the phase (liquid 
or vapour) and may use fractions on a mass or a mole base. 
 
Some properties rather than have a mixing rule, have a ‘constant’ method, in which case the property cannot be calculated, 
but must have a value set by a user.  This is used in general for one of two reasons:   

• To indicate that there is no ‘recommended’ method for calculating a property for a mixture, and users must be 
responsible for providing values.   

• To replicate the old property system, where some properties were calculated only once (usually during mixture 
creation) and simply retrieved later12. 

 
Normally in these circumstances a method is provided but only invoked in Phast when the ‘Calculate’ button for a mixture 
is pressed.  The calculated value is then stored as a constant, and does not change with mixture composition unless the 
‘Calculate’ button is re-pressed. 
 
The standard PHAST / SAFETI templates conform to the mixing rules applied in the old property system PRP. See 
Appendix A for further details on application of methods and templates in the new property system XPRP.  
 
 

                                                        
12

 These ‘constant’ properties were a limitation of SAFETI 6.4, but were a logical implementation of the pseudo-component approach, where composition was 

assumed fixed once the material had been created. For molecular weight ideal mixing has been applied in SAFETI 6.5 even though it was a constant property 
in the old system. 
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3.3 Equations of state 
 
The equations are based on the equations for a pure material modified by means of mixing rules to apply to vapour 
mixtures or to liquid mixtures. There is the choice of Ideal, the Virial Equation and three cubic equations of state: Redlich-
Kwong, Soave-Redlich-Kwong, and Peng-Robinson. These equations were chosen because they can predict the 
behaviour of fluids over a wide range of conditions, covering the vapour phase and the liquid phase, and covering multi-
component fluids. The choice of equations of state is discussed in detail in Section 3.1. 

3.3.1  Ideal Equation 
 
The ideal gas is modelled by the unmodified ideal gas equation: 
 

 

0.1
RT

PV
Z  

( 21 ) 

 
Where 
 
Z is the compressibility (-) 
P is the absolute pressure (N/m2) 
T is the absolute temperature (K) 
V is the molar volume (m3/kmol) 
R is the gas constant (J/kmol.K) 
 
So the compressibility, Z, is always 1.0 for an ideal gas. 

3.3.2  Virial Equation 
 
The virial equation itself is an expansion of the compressibility in either 1/V or P. In terms of 1/V it is as follows: 
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In the property system we adopt the first order virial equation, obtained by ending the expansion with the second coefficient 
B:  
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( 23 ) 

 
Here B is the second virial coefficient. For pure components this is evaluated as a function of temperature T using its 
DIPPR® equation. For mixtures the ideal mixing rule is applied to the pure component values on a molar basis.  
 
Quadratic equation of state for compressibility Z 
The Virial equation is only applicable to the vapour phase. The above equation can be solved as a quadratic for V once B, 
P and T are known. 
 
If we do that, rearrange with the compressibility Z as the subject of the equation and eliminate V, we obtain a quadratic in 
Z: 
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The solution to this is: 
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The maximum root is the vapour compressibility. Note that there is no real solution for the compressibility when the 
contents of the square root are negative i.e. 
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( 26 ) 

 
At this point the equation fails and the property system returns an error. This reflects the fact that as we have ignored 
higher order terms, behaviour at high pressures is not well represented. In such circumstances one of the cubic equations 
of state should be used. 
 

3.3.3  Three cubic equations 
 
The three cubic equations of state employed by the property system are Redlich-Kwong (RK), Soave-Redlich-Kwong 
(SRK), and Peng-Robinson (PR). These can all be written in a generalised form of the cubic equation of state as: 
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For mixtures, the parameters of the equation are determined according to mixing rules: 
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( 28 ) 

where: 
 
yi, yj are the mole fractions of components i and j  for the phase under consideration (liquid or vapour) 
kij is the binary interaction coefficient13 between components i and j 
N is the number of components in the mixture 

 
The pure component parameters are given by 
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13

 Binary interaction coefficients are normally expressed as k ij in the literature. The use of cij = 1 – kij is peculiar to the old DNV implementation in PRP where the input 

values need to be for cij . The reason for this is the somewhat obscure use of the interaction parameters for more than one purpose. They can also be used in 
the non-ideal mixing rules for simple temperature dependent properties. 
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where 
 

Equation of 
state 

u  
consta  constb  i  wf  

Redlich 
Kwong 

0 0.4278 0.0867 
TTc /  

 

Soave 
Redlich 
Kwong 

0 0.4274
7 

0.0866
4  2)1(1 cw TTf   

215613.055171.148508.0  wf  

(Graboski & Daubert, 1978) 

Peng 
Robinson 

1 0.4572
4 

0.0778  2)1(1 cw TTf   
226992.0542261.137464.0  wf  

 
Table 6: Value of Constants for the Cubic Equations of State 

 
where: 
 
Tc is the critical temperature for the material (K) 
Pc is the critical pressure for the material (N/m2) 
Tr is the reduced temperature (T/Tc) 

 is the acentric factor for the material, a constant given by: 
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where Psat(T) is the saturation pressure at the specified temperature (i.e. at 0.7Tc). 
 
The above application of equations of state to mixtures involves the use of mixing rules to calculate the parameters of the 
equation from the pure component values and composition. Other than this, the fundamental expressions for the 
calculation of the derived properties are the same for mixtures as for pure materials. 
 
This approach is limited in its applicability to homogenous mixtures that do not react or separate, and that do not exhibit 
polar effects; some non-ideality can be taken into account, but the range and precision are limited. 
 
Both the Soave Redlich-Kwong and the Peng-Robinson equation give good results for mixtures of non-polar or slightly 
polar components. The binary interaction constants kij must be determined from equilibrium data. For hydrocarbon 
mixtures the kij may be taken to be zero. The binary interactions are not very important for bulk phase calculations but 
may be quite significant in equilibrium K-value calculations. Even mixtures that are fairly non-ideal may be successfully 
treated if specific binary interaction constants are derived from measured equilibrium data. Graboski and Daubert (1978) 
give suggested values for interaction parameters of several non-hydrocarbon gases. 
 
Treatment of supercritical components for Soave-Redlich-Kwong equation 

Improved results can be obtained for supercritical components by modifying the functional form for the calculation of . 
Graboski and Daubert (1979) suggest the following extrapolation for hydrogen: 
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with c1 = 1.202, c2 = -0.30228 
The model currently uses the Mathias (1983) correlation for some other common supercritical components (N2, CO2, H2S, 
CO): 
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Cubic equation of state for compressibility Z  
 
The cubic equation ( 27 ) can be re-stated as an equation in Z=(PV)/(RT), 
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Where 
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This can be rearranged to give the cubic in Z of: 
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( 37 ) 

The above cubic equation of state can have 1 or 3 real roots, depending on the values of the coefficients.  In the latter 
case, the minimum root is the liquid compressibility, and the maximum root the vapour compressibility.  In the former case, 
the two property systems diverge in their approaches14.  The solution in these cases is discussed in detail in Appendix E. 

Summary 
The Soave-Redlich-Kwong and Peng-Robinson equations are quite similar, and there is little to recommend the use of 
one over the other. However, the slightly more complicated form of the attraction term in the Peng-Robinson equation is 
thought to allow a more accurate representation of liquid phase properties. 

                                                        
14

 CORRECTED.  The old property system approach has no physical meaning, and appears to have been chosen largely to avoid discontinuities in properties.  A 

more conventional approach is taken in the new property system. VI4291. 
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3.4 Derivation of mixture properties 
 
Thermodynamic properties for the vapour mixture or the liquid mixture can be derived from the equation of state for the 
mixture. The basic premise of the equation of state approach is that the same model (same equation of state) should be 
used to calculate the thermodynamic properties (densities, fugacities, enthalpy departures and entropy departures) for all 
phases. In the specific case of vapour-liquid equilibrium, the requirement is that the selected equation of state should be 
able to model adequately both vapour and liquid phase. 
 
The derivation of each property for the mixture is described below. 

3.4.1  Compressibility and density 
 
The compressibility of the mixture (Z) is calculated from the equation of state, as discussed in the previous section. The 
density ρ (kmol/m3) is determined from Z using the equation 
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( 38 ) 

 
For liquids, equations of state may not be very accurate at predicting density, so the Costald method is also available, 
calculating liquid density as the inverse of the molar volume calculated by the Thomson equation: 
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Where 
 
Vsat = molar volume calculated from the saturated liquid density in section 2.1.2 

Psat  = saturated vapour pressure calculated as function of temperature T as in section 2.1.2 

And the C and B parameters are given by: 

 
 0344483.00861488.0 C  ( 40 ) 
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( 41 ) 

Where   is the acentric factor as defined by equation (29) and the A parameters are: 
 

 070217.91 A  ( 42 ) 

 62.453262 A  ( 43 ) 

 1102.1353 A  ( 44 ) 

 2

4 14188.1250047.079594.4)ln(  A  
( 45 ) 

     

3.4.2  Enthalpy and entropy 
 
General 
Vapour or liquid enthalpy and entropy15,16 are calculated using the standard departure functions as derived from the 
Maxwell equations: 
 
By definition [see e.g. Section 5.3 in Reid et. al. (1987)] 
 

                                                        
15

 CORRECTED.  The wrong gas constant (in terms of units) was used in the old property system for the calculation of ideal gas entropy, thus absolute entropies 

cannot be compared between new and old systems, though s terms used in the models will be very similar. VI3710. 
16

 DOC. The method described in this section is applied for old property system for the vapour enthalpy/entropy evaluation only. Different methods are applied for 

evaluation of the liquid enthalpy and entropy  
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 )()()1( refrefref SSTAAZRTHH   

( 48 ) 

 
where 
 
A = Helmholtz function (J/kmol) 

S = Entropy (J/kmol/K) 
H = Enthalpy (J/kmol) 
 
The subscript “ref” refers to the reference state, which corresponds to an ideal gas with the same pressure P, the same 
temperature T, and the same composition. Thus, according to the ideal gas law, the reference volume Vref is given by, 
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The vapour enthalpy Hv and liquid enthalpy HL  at a given temperature and pressure are calculated by making a correction 
to the enthalpy of the ideal gas Hig=Href: 
 

 ),(),(),( PTHPTHPTH vrefv   
( 50 ) 

 ),(),(),( PTHPTHPTH LrefL   
( 51 ) 
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( 52 ) 

where: 
 
Ci

p,ig(T)  is the ideal gas heat capacity of the component (J/kmol.K) as a function of temperature, obtained from its 
DIPPR® equation. 

TREF is a reference temperature, set as 298.16 K  

H(T,P) is the correction to the ideal gas enthalpy, or the “enthalpy departure function”. 
 
Similarly, the vapour entropy Sv and liquid entropy SL at a given temperature and pressure are calculated by making a 
correction to the entropy of the ideal gas Sig=Sref 

 
 ),(),(),( PTSPTSPTS vrefv   

( 53 ) 

 ),(),(),( PTSPTSPTS LrefL   
( 54 ) 
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( 55 ) 

where additionally 
 
PREF is a reference pressure, set as 1 Pa 
 
The program first iterates to find the value of the compressibility Z that satisfies the equation of state at the specified 

pressure and temperature. Given Z it can then obtain H and ΔS. The liquid departure functions may be obtained from an 
equation of state that represents the liquid phase adequately. 
 

The enthalpy departure function H=H-Href and the entropy departure function S=S-Sref for a particular phase is 
calculated from the equation of state, as indicated below for the different equations of state. 
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Ideal equation 
Since this assumes no dependence on pressure, the enthalpy departure for the ideal method is zero, and the enthalpy is 
calculated as the ideal gas enthalpy using the appropriate DIPPR equation. As with enthalpy the entropy departure for an 
ideal mixture is zero. 
 
Virial equation 
Applying the virial equation of state ( 23 )  into Equations  ( 46 ), ( 47 ), ( 48 ) leads to: 
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Cubic equation 
Applying the cubic equation of state ( 27 )  into Equations  ( 46 ), ( 47 ), ( 48 ) leads to: 
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Where B* is defined by Equation ( 35 ) and  
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3.4.3  Fugacity coefficient17 
 
General 

According to Section 5.8 in Reid et el. (1987), the fugacity coefficient i for component i in the mixture is given by  
 

 

Px

f

Py

f

i

Li

Li

i

Vi

Vi

,

,

,

,
ˆ,ˆ    

( 63 ) 

 

 































refnVTi

ref

i
P

P
RT

n

nAnA
RT

ij

ln
)(

)ˆln(

][,,

  

( 64 ) 

 

Here fi is the fugacity, and n are mole amounts such that  inn ; and nVV  . The partial derivative indicates 

that the temperature T, the total system volume V, and all mole numbers (except i) are to be held constant.  
The condition for phase equilibrium is fi,V = fi,L, and therefore  
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Ideal method 

For the ideal method, the vapour fugacity coefficient I,V = 1.0  Moreover,  
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Therefore the liquid fugacity is given by  
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Virial Equation 
The Virial equation is not used for phase equilibrium in this system and so does not need a fugacity coefficient. 
 
Cubic equation 
The fugacity coefficient is used in the cubic equation only.  

In terms of moles ( i.e. replacing V with nVV  ) , the cubic equation ( 27 ) and the Helmholtz energy equation ( 59 ) 

can be rewritten as 
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Using 

                                                        
17

DOC. The old property system does not use a fugacity coefficient.  
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and Equation ( 69 ) into Equation ( 64 ) it now follows that  
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Defining λ (while making use of Equation ( 28 )) by 
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and using (see Equation ( 62 )) 
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it follows upon differentiation of Equation ( 70 ) that 
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Using Equation ( 75 ) into ( 72 ) it now follows that 
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The program first iterates to find the value of the compressibility Z that satisfies the equation of state at the specified 

pressure and temperature, as described in Appendix A. Given Z it can then obtain I using the above equation. 

3.4.4  Isothermal Compressibility18 
 
General 
Using V = RTZ/P, it follows that the isothermal compressibility is defined by 
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Ideal method 
Using Z=1, it follows that 
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Virial equation 
By means of differentiation of Equation ( 24 ), one can solve for (∂Z/∂P)T. Using this in Equation ( 77 ), leads to  
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Cubic equation 
By means of differentiation of Equation ( 36 ) one can solve for (∂Z/∂P)T. Using this in Equation ( 77 ), leads to  
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Where 
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18

 This is currently not yet implemented. 
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3.4.5  Coefficient of Thermal Expansion19 
General 
Using V = RTZ/P, it follows that the coefficient of thermal expansion is defined by 
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Ideal method 
Using Z=1, it follows that 
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Virial equation 
By means of differentiation of Equation ( 24 ), one can solve for (∂Z/∂T)P. Using this in Equation ( 82 ) leads to  
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Cubic equation 
By means of differentiation of Equation ( 36 ) one can solve for (∂Z/∂T)P. Using this in Equation ( 82 ) leads to 
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Where 
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 This is currently not yet implemented. 
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3.4.6  Specific Heat Capacities20 
General 
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Ideal solution 
To add 
Virial solution 
To add 
Cubic solution 
To add 
 

3.4.7  Ratio of Specific Heats  
The ratio of specific heats (Cp/Cv = ) is calculated from the ideal gas heat capacity (section 1.1.2) using the equation21 

 𝑪𝒑

𝑪𝒗
=

𝑪𝒑,𝒊𝒈

𝑪𝒑,𝒊𝒈 − 𝑹
=  

( 90 ) 

3.4.8  Vapour or Liquid sonic velocity 
The velocity of sound [m/s] through a fluid is the square root of the derivative of pressure with respect to density at 
constant entropy: 
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For ideal gases, the speed of sound is simply given by: 

 

𝒄 = √
𝜸𝑷

𝝆
 

( 92 ) 

 

For single-phase real fluids, the speed of sound can be expressed analytically as (Picard and Bishnoi, 1987): 

 

𝒄 = √
𝜸

𝒌𝝆
 

( 93 ) 

 

Where  is the ratio of specific heats, i.e., based on real fluid properties and k [ms2/kg] is the isothermal coefficient of 

volumetric expansion: k can be expressed as (Walas, 1987): 

 

𝒌 = −𝝆 (
𝝏𝑽

𝝏𝑷
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𝑻
 

( 94 ) 

                                                        
20

 DOC. This section needs to be further completed. Currently there is no logic for non-ideal specific heat in XPRP. 
21

 This equation for the ratio of specific heats is only applicable to an ideal gas 
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Note that  and k can be obtained analytically from relevant equations of state (see sections 3.4.4 and 3.4.6). 
 
Alternatively, the derivative in equation ( 91 ) is calculated numerically by perturbing the pressure and finding the 
temperature that produces a negligible change in entropy, i.e. 
 
• Calculate sv(T,P) and ρv(T,P) 
• Iteratively calculate sv(T+ΔT, P+ΔP) where the value of dT is estimated in each iteration from (ds/dT) until 
s(T,P) = s(T+ΔT, P+ΔP) 
• Calculate ρv (T+dT, P+dP) 
• Calculate c from the equation above 
 
This method uses a perturbation in pressure of 1% of the input value, and a convergence tolerance on entropy of 1 
J/kmol.K. Note that the numerical approach may be applied in determining the sonic velocity in two-phase, homogenously 
mixed fluids as well (Mahgerefteh et al., 1999). 

3.4.9  Saturated and liquid properties (old PRP) 
 
In the old property system (PRP) equation of state methods were not employed for the calculation of liquid properties at 
all. Instead, they were done by alternative methods, usually involving a departure from the vapour state via the heat of 
vapourisation. 
 
Although these old methods have been implemented as a non-recommended option in the new property system, the 
theory behind them is not always valid. Many of the equations used have validity only for a pure component. 
 
For example, many of the methods make use of the saturated vapour pressure. For mixtures this is calculated by a simple 
mixing rule on the component vapour pressures and therefore corresponds to the bubble point pressure that would be 
obtained from ideal fugacities. The use of this ideal bubble point pressure when calculating vapour properties can give 
rise to serious problems for wide boiling mixtures or those containing non-condensable gases. 

HEAT OF VAPORISATION 
 
The latent heat of vaporisation is calculated from the Clapeyron-Clausius equation, 
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( 95 ) 

Rearranging this equation yields the following expression for the heat of vaporisation: 
 

 

dT

dP
)V - VT( = H sat

Lvvap  

 

( 96 ) 

The molar volume of the liquid VL is obtained from the DIPPR® equation for the saturated liquid density, and the derivative of 
the saturation pressure is obtained by differentiation of its DIPPR® equation22. The vapour volume is calculated from the 
chosen equation of state. 
 
For mixtures, the liquid volume and derivative of the vapour pressure are calculated by simple mixing rules from the pure 
component data. Strictly speaking, there is no such thing as “heat of vapourisation” for a mixture because it does not change 
phase at constant temperature and pressure. 
 
 
Saturated Vapour Enthalpy 
This is calculated as described for the vapour enthalpy, with pressure set to the saturated vapour pressure Psat for the 
specified temperature T. 
 
For mixtures, the vapour pressure is calculated by a simple mixing rule from the pure component data. This means that the 
calculation is performed at the ideal bubble point of the mixture. This can cause serious problems for wide-boiling mixtures or 
those containing inert gases such as N2. 
 

                                                        
22

 CORRECTED.  In SAFETI 6.4 and earlier versions this was wrongly calculated for mixtures. VI6413. 
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Saturated Liquid Enthalpy 
This is calculated as follows: 
 

     vapsatVsatL HPTHPTH  ,,  

 

( 97 ) 

 
 
 
where: 
 
Hv(T,Psat) is the saturated vapour enthalpy at the specified temperature, calculated as described above. 

Hvap is the latent heat of vaporisation, calculated as described above. 
 
 
Liquid Enthalpy 
The enthalpy for liquid at a given temperature and pressure is derived from the saturated liquid enthalpy given above: 
 

     HPTHPTH satLL  ,,  ( 98 ) 
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Using Maxwell’s equations and considering the change in enthalpy at a constant temperature, this can be expressed as: 
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We are assuming that the liquid is incompressible, so the volume at any pressure is equal to the saturation volume, and: 
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Therefore: 
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( 103 ) 

V and dV/dT are obtained from the DIPPR Equation for the liquid density23, and also the saturated vapour pressure Psat, is 
derived from its DIPPR equation. 

 
Saturated Vapour Entropy 
This is calculated as described for the vapour entropy, with pressure set to the saturated vapour pressure Psat for the 
specified temperature T. 
 
Saturated Liquid Entropy 
Change in entropy is defined by: 

                                                        
23

 CORRECTED.  VI6406.  Derivative of liquid volume was inconsistently done in the old system for supercritical extrapolations: V was constant, but dV/dT ≠ 0. 



 

Theory | Property System |  Page 34 

  

 

T

Q
S


  

( 104 ) 

where Q is the change in heat content. 
The saturated liquid entropy is calculated from the saturated vapour enthalpy as follows: 
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( 105 ) 

where: 
 
sv(T,Psat) is the saturated vapour entropy at the specified temperature, calculated as described above. 

Hvap is the heat of vaporisation, calculated as described above. 
 
Liquid Entropy 
The entropy of the liquid at given temperature and pressure can be derived from the saturation entropy by integrating 
with respect to pressure at constant temperature. From Maxwell’s equations: 
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Assuming that liquids are incompressible, this is constant: 
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( 107 ) 

dV/dT is obtained from the DIPPR Equation for the liquid density. 
The saturated liquid entropy SL(T,Psat) is calculated as described above. 
 
Saturated Vapour Density 
This is calculated as described for the vapour density, with pressure set to the saturated vapour pressure Psat, for the 
specified temperature T. 
 

3.5 Special treatment for special chemicals 

3.5.1  Property evaluation for HF including effects of acid association 
 
This theory has been developed in a general manner to model the effects of association on the physical properties of the 
associating material. The model will only consider the formation of dimers, trimers, hexamers and octamers. Additionally 
the model is only applicable to pure components. Association is not  
modelled for mixtures. 
 
The model was developed for hydrogen fluoride, and should not be used for any other material. 

The Oligomerisation Model 
The vapour pressure for the material is defined as being the sum of the partial pressures of its subspecies: 
 

 
v 1 2 3 6 8P  =  P  + P  + P  + P  + P  

 

( 108 ) 

The vapour pressure is obtained from DIPPR® equation 101 using the standard DIPPR® coefficients.  
The equilibrium relationship is defined by: 
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The equilibrium constants are found using regression from experimental data to fit the equation: 
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Thus: 
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( 111 ) 

The mole fractions in the vapour phase of each of the subspecies are given by: 
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( 112 ) 

such that: 
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( 113 ) 

Substituting ( 112 ) into ( 111 ) gives: 
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Equation ( 114 ) can be rearranged to give the following polynomial for y1:24 
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( 115 ) 

and the program performs an iteration to obtain the value of y1.that satisfies this equation, and given y1 it can then calculate 
the mole fractions of the other subspecies from the relations given above. 

Association Factor, f  
The association factor, f, is defined as: 

                                                        
24

 JUSTIFY.  VI4292.  According to this theory the vapour pressure for the material Pv is calculated for the partial pressures of the subspecies and is thus dependent 

on temperature alone.  In both old and new property systems, however, Pv is not calculated but is an input directly to the method 
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 f =  y  +  2 y  +  3 y  +  6 y  +  8 y1 2 3 6 8  

 

( 116 ) 

Average Molecular Weight, Mave 
The average molecular weight of the vapour is calculated as follows: 
 

 Mf = M 1ave  

 

( 117 ) 

where M1 is the molecular weight of the monomer, obtained from the properties database25. 

Vapour Volume 
The vapour volume is derived from the vapour volume of the monomer and the association factor by: 
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( 118 ) 

Heat of Vaporisation 
The latent heat of vaporisation is calculated from the Clapeyron-Clausius equation using a differentiated form of the DIPPR® 
equation for the saturated vapour pressure. The Clapeyron-Clausius equation is: 
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Rearranging this equation yields the following expression for the heat of vaporisation: 
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( 120 ) 

The molar volume of the liquid VL is obtained from its DIPPR® equation using standard, and the derivative of the saturation 
pressure is obtained by differentiation of its DIPPR® equation. 

Enthalpy 
The enthalpy calculations are based on the saturated liquid enthalpy which is derived from the liquid heat capacity; the 
saturated vapour enthalpy is calculated by adding the heat of vaporisation to the saturated liquid enthalpy, and the vapour 
enthalpy is then found by approximating the heat of association and adding this to the saturated vapour enthalpy. 

• Saturated Liquid Enthalpy 
The saturated liquid enthalpy is found from the integral of the liquid heat capacity from a reference temperature, Tref , to 
the current temperature, T: 
 

 

  dTC =TH Lp

T

T

satL

ref

,  

( 121 ) 

The integral of the liquid heat capacity is evaluated by integration of its DIPPR® equation.  

• Saturated Vapour Enthalpy 
The saturated vapour enthalpy is calculated from the liquid enthalpy by adding the heat of vaporisation: 
 

     vsatLsatv HTH = TH   

 

( 122 ) 

• Vapour Enthalpy at Pressure 

                                                        
25

 VI4290.  The correction factor is not currently used.  The DIPPR value is used directly. 
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The vapour enthalpy at pressure is given by: 
  

    ascvp
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satvv HdTC + PTH = PTH
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( 123 ) 

However, there is no expression available for the heat capacity of the oligomer vapour from which the integral can be 
evaluated, so an alternative approach is required. 
 
At a given pressure the vapour tends to become monomeric as the temperature increases. The vapour enthalpy at a given 
pressure of monomeric vapour is equal to the saturated liquid enthalpy plus the heat of vaporisation of the material 
assuming it is all monomer plus the heat of association and the integral of the monomer heat capacity from the saturation 
temperature to the temperature in question. 
 
The approach taken starts with the saturated vapour enthalpy. The enthalpy of the vapour at a temperature where the 
vapour is wholly composed of monomer is then the saturated vapour enthalpy plus the integral of the monomer heat 
capacity plus the difference between the heat of vaporisation from liquid to the oligomer vapour and the heat of 
vaporisation from liquid to monomeric vapour. This last term is derived in a similar fashion as the heat of vaporisation 
(Equation ( 120 )) and is here termed the heat of association: 
 

 
 

dT

dP
VVT =H sat

vasc  1
 

 

( 124 ) 

The integral of the monomer heat capacity is obtained by differentiation of DIPPR® equation 107 and using standard 
DIPPR® coefficients for vapour heat capacity. The vapour enthalpy at a given pressure is then approximated by assuming 

a temperature range over which the vapour goes from saturation conditions to being purely monomeric vapour, Tasc . 
 
The vapour enthalpy is then approximated by: 
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where: 
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Entropy 
A similar “bottom up” approach is used in calculating entropies. 

• Saturated Liquid Entropy 
The saturated liquid entropy is defined as: 
 

 

  dT 
T

C
 =TS

Lp
T

T

satL

sat

ref

,

  

 

( 126 ) 



 

Theory | Property System |  Page 38 

  

where the integral is evaluated using DIPPR® equation 100 for the liquid heat capacity. 

• Saturated Vapour Entropy 
The saturated vapour entropy is derived from the saturated liquid entropy the heat of vaporisation: 
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( 127 ) 

• Vapour Entropy at Pressure 
This is derived in a similar fashion to the saturated vapour entropy using the change in enthalpy from saturation 
conditions given in Equation ( 123 ). So: 
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3.5.2  Property evaluation for ammonia including reaction with water26 
 
The program uses the model of Raj and Reid (1978) to calculate the enthalpy for a material that reacts with water. This 
model was developed for the reaction between ammonia and water and should not be used for any other material. 
 
The liquid-water enthalpy HL,W, in J/kg, at atmospheric pressure is given by a cubic expansion: 
 

 
WLLWLLWLLWLWL DxCxBxA=H ,
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( 129 ) 

where: 
 
xL is the mass fraction of liquid in the liquid-water aqueous solution 
 
A, B, C, D are constants set for the material in the properties database 
 
The modified partial enthalpy of water, H'W, and the modified partial liquid enthalpy, H'L, are then the partial derivatives of 
the liquid-water enthalpy at constant pressure with respect to changes in the mass fraction of water and of liquid 
respectively: 
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     WLLWLWLLWLLWLWLL DxCDxCxBAH ,

3
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2

,,, 222   
( 131 ) 

 

3.5.3  Property evaluations for solid phase CO2 
 
The phase diagrams of water and CO2 are included below. It has a critical temperature of 304.2K above which it is always 
vapour and a triple point of 5.1 atmosphere and 216.6K below which all non-vapour CO2 will be solid. 

                                                        
26

 DOC.  These are not properties in the normal sense, and are not included in the new property system.  They used only by the pool vaporisation calculations. 
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Figure 2.  Liquid and solid vapour pressure curves for CO2 
 
The atmospheric expansion (ATEX) and outdoor dispersion (UDM) models allow for the formation of solid phase CO2.  To 
do this they require solid phase properties not supported for other materials. 
 
A number of new ‘combination’ properties have been introduced for CO2, and these are described below.  The approach 
is to define a ‘non-vapour’ property, which either uses liquid or solid property, depending on the temperature. 
 
Saturated vapour pressure and saturated vapour temperature 
The saturated vapour pressure of the component, Pn,sat(T) is set as:   
 

- the vapour pressure Ps,sat(T) for solid-vapour equilibrium for T <Tmelt 
- the vapour pressure PL,sat(T) for liquid-vapour equilibrium, T>Tmelt (liquid) 

 
In the DIPPR property database including in PHAST, Tmelt equals the melting temperature at 1 bar for chemicals with 
triple-point pressure lower or equal to 1 bar; this is the case for water. Otherwise it equals the triple-point temperature; this 
is the case for carbon dioxide. 
 
The “liquid” and vapour pressure curve PL,sat(T) and “solid”  vapour pressure curve Ps,sat(T) obtained from the property 
system for CO2 and water are given by Figure 2. 
 
Pn,sat at a given temperature is thus the minimum of the solid and liquid vapour pressures at that temperature shown in 
the figures.  The “combination” saturated vapour temperature, Tn,sat(P), is the inverse of Pn,sat(T), i.e. the maximum 
temperature of the two curves for a given pressure P. 
 
Non-vapour enthalpy 
The specific enthalpy (J/kg) of the non-vapour hn(T) is set as follows: 
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Here the discontinuity Δhfus in enthalpy at the melting point Tmelt is the enthalpy of fusion Δhfus (J/kg). The DIPPR solid 
heat capacity CPs

DIPPR(T) decays virtually linearly between the temperatures Tmelt and To = 183.15K.   
 
Therefore it can be approximated by  
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Thus the integral in the above equation is evaluated as 
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Therefore it can be approximated by  
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with 
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Thus the integral in the above equation is evaluated as 
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Non-vapour entropy 
The entropy of a solid (Ss) is given by 
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Non-vapour entropy can be calculated in a manner analogous to enthalpy: 
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If we use the same approximation as for enthalpy (i.e. that solid heat capacity CPs
DIPPR decays virtually linearly with 

temperature), then  
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This evaluates to 
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Where 
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Non-vapour density 

In a manner analogous to non-vapour enthalpy, non-vapour density n is a new property.  Solid density uses a DIPPR 
temperature equation. 
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4. CALCULATION OF PHASE EQUILIBRIUM FOR A MIXTURE 
 
This section describes the theory used in FLAS, the new module which performs rigorous phase-equilibrium calculations 
for multi-component streams. 

4.1 Phase equilibrium for a multi-component stream 
 
The general case of phase equilibrium in the flashing of a multi-component stream is shown in Figure 3. A multi-
component mixture stream of given molar flow F, overall composition (mole fractions) z , temperature T0 and pressure 
P0 is flashed at a temperature T and a pressure P with exchange of heat Q (which may be zero). This process produces 
a vapour stream (of molar flow V and composition y) and a liquid stream (of molar flow L and composition x). 
 

 
Figure 3: Equilibrium between Vapour and Gas in Multi-Component Flash 
 
Some of the flash conditions are known (e.g. T and P), and the model calculates the remaining conditions (e.g. V, L, y 
and x). Five types of flash calculation are performed, with different known and unknown quantities for each type: 

1. Isothermal flash or flash at specified temperature T and pressure P. 
 
This is a very useful calculation for a variety of situations. It can be used in phase identification / scenario definition 
before a consequence calculation. Calculation of mixed-phase stream thermodynamic properties (enthalpies, 
entropies) is dependent on an isothermal flash. 
 

2. Isentropic flash or flash at specified entropy s and pressure P. 
 
This is a reversible adiabatic flash and it can be used in situations usually approximated by a reversible process e.g. 
an orifice expansion between the bulk of the fluid and the vena contracta. 
 

3. Isenthalpic flash or flash at specified enthalpy H and pressure P. 
 
This is an irreversible adiabatic flash and it can be used in processes with high degree of irreversibility e.g. the 
discharge through a pipe (which involves considerable friction) can be modelled with an energy balance, which, in 
turn, can be converted to an equivalent enthalpy balance. This is only an example where the isenthalpic flash can be 
a useful function for the solution of problem but it is not implied that discharge problems can generally be reduced to 
phase equilibrium problems. 
 

4. Constant Energy flash or flash at specified energy E (H + 0.5u2) and pressure P. 
 
The energy E is given by (H + 0.5u2) where u is the flow velocity. This is a generalisation of the isenthalpic flash. The 
constant energy flash is used in discharge modelling for adiabatic but irreversible expansions, when the kinetic energy 
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cannot be neglected. e.g. expansion from the stagnation point to the pipe orifice and for the expansion from the pipe 
orifice to the atmosphere. 
 

5. Constant vapour fraction flash or flash at specified P & Vapour fraction () or T & . 
 
This includes dew / bubble pressures and temperatures. This can also be very useful in phase identification /scenario 
identification and in a variety of consequence models. 

 
The details of these calculations are described below. 

4.2 Mathematical formulation 
 
The flash process assumes equilibrium between the vapour phase and the liquid phase, which means that the 2 phases 
have the same temperature (T) and pressure (P) and the total Gibbs free energy G of the 2-phase system is minimised: 
 

 )],,,,([
,,,

LVPTGMIN
LV

xy,
xy

 

 

( 145 ) 

subject to mass balance and other equality and inequality constraints. The optimisation variables are different depending 
on the specified parameters. 
 
As it is shown in standard textbooks (e.g. Section 4 in Perry and Green, 1997, Perry's Chemical Engineers' Handbook, 
1973) assuming that the 2-phase system is closed and there is no chemical reaction, minimisation of the total Gibbs free 
energy is equivalent to equalities between the vapour-phase component chemical potentials and the respective liquid-
phase component chemical potentials: 
 

 ),,(),,( ,, xy PTPT iLiv               for all i=1,NC 

 

( 146 ) 

where NC is the number of components in the mixture 
 
It can easily be shown that this is equivalent to an equality between each vapour phase component fugacity (fv,i) and the 
respective liquid phase component fugacity (fL,i): 
 

 ),,(),,( ,, xy PTfPTf iLiv             for all i=1,NC 

 

( 147 ) 

If an equation of state approach is used for the calculation of the fugacities of both phases then the fugacities are calculated 
from the equations: 
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( 148 ) 
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( 149 ) 

where iv,̂  and iL,̂  are the vapour and liquid fugacity coefficients for component i, calculated from the equation of 

state as shown in Equations ( 262 ) to ( 265 ).  
 
Equation ( 147 ) is usually written in terms of vapour and liquid phase mole fractions and the equilibrium K-value: 
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Then K-values can be calculated from the equation: 
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The flash process of Figure 3 is also described by the following equations: 
 
Overall material balance: 
 

 LVF   

 

( 152 ) 

Component material balance: 
 

 LxVyFz iii   

 

( 153 ) 

Vapour Phase Mole Fractions: 
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Liquid Phase Mole Fractions: 
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Molar Vapour Fraction: 
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V
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( 156 ) 

Enthalpy Balance: 
 

 0),,(),,( 00000  HPTHPTH x,yxy,  
( 157 ) 

 ),,()1(),,(),,( xyxy, PTHPTHPTH Lv   

 

( 158 ) 

The vapour and liquid enthalpies Hv and HL for the mixture are calculated from the equation of state, as described in 
Equations ( 50 ) to ( 254 )  
 
 
Entropy Balance: 
 

 0),,(),,( 00000  SPTSPTS x,yxy,  
( 159 ) 

 ),,()1(),,(),,( xyxy, PTSPTSPTS Lv   

 

( 160 ) 

The vapour and liquid entropies Sv and SL for the mixture are calculated from the equation of state, as described in 
Equations ( 53 ) to ( 257 ).  
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Energy Balance: 
 

 0),,(),,( 00000  EPTEPTE x,yxy,  
( 161 ) 

 ),,()1(),,(),,( xyxy, PTEPTEPTE Lv   
( 162 ) 
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( 165 ) 

The vapour and liquid enthalpies Hv and HL for the mixture are calculated from the equation of state, as described 
Equations ( 50 ) to ( 254 ).  
 

4.3 Solving the phase-equilibrium Equations: literature review 
 
The method used to solve the phase-equilibrium equations shown in Section 4.3 depends to some extent on the type of 
calculation that is being performed (i.e. which quantities are known and which are required), and on the equations involved. 
Broadly there are 2 approaches of solution: 
 

• Approach A: Numerical solution of a system of non-linear equations. 
 
This normally involves the equilibrium equations (Equations ( 147 ) or ( 150 )), the material balance equations or 
similar (Equations ( 152 ) to ( 155 )) and possibly an additional equation such as the vapour fraction specification 
(Equation ( 156 )), the enthalpy balance (Equations ( 157 ) and ( 158 )) or the entropy balance (Equations ( 160 ) 
and( 159 )). 
This is the most widely used approach and it has also been used in this work. 
 

• Approach B: Constrained minimisation of the Gibbs free energy G. 
 
The minimisation includes a number of equality constraints such as the material balance equations or similar 
(Equations ( 152 ) to ( 155 )) and possibly an additional equation such as the vapour fraction specification (Equation 
( 156 )), the enthalpy balance (Equations ( 157 ) and ( 158 )) or the entropy balance (Equations ( 160 ) and( 159 )). 
The algorithm also includes some inequality constraints since most of the variables (temperatures, pressures etc.) 
have to be positive numbers and some other variables (vapour fraction, mole fractions) have their own validity ranges. 
 
This approach is widely used for the solution of the chemical reaction equilibrium problems and it has been 
occasionally used for phase equilibrium. 

 
Significant research on the algorithms of solution of the phase equilibrium problem was conducted in the 1970s and 1980s. 
This was often part of development of flowsheeting programs / process simulators and led to substantial progress in the 
development and refinement of the algorithms. This progress has been summarised in review papers such as Michelsen 
(1982b), Heidman (1983) and Ammar and Renon (1987). More recent work has focused on more specialised topics such 
as phase equilibria of reactive systems (Seider and Widagdo, 1996), calculation of flammability limits using chemical 
equilibrium (Melhem, 1997) and other limited scope improvements (Vetere, 1996, Michelsen, 1998). Currently there is 
more effort in the area of improvement of the actual thermodynamic models for a wider range of mixtures. 

4.3.1  Solution of non-linear equations 
 
Considering the methods of solution of the system of non-linear equations (equation solving approach or approach A), 
there are two further sub-classes: 

Global Equation-Solving Approach 
 
The system of all equations (including equilibrium equations and material balances) is solved simultaneously in terms of 
all the problem unknowns. Characteristic of this approach is that the material balances are not satisfied during iteration. 
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A well-known formulation following this approach is the one by Asselineau et al (1979) who use a global Newton-Raphson 
method to solve the system of equations. 
 
The advantage of a global Newton Raphson is that, assuming a good variable initialisation, the algorithm converges rapidly 
towards a solution, even for points near the critical point. The theoretical convergence rate of Newton Raphson near the 
solution is quadratic. The disadvantage of the approach is that, in the absence of good initialisation, the algorithm may 
diverge or converge slowly. 
 
There have been a number of attempts to improve over the global Newton Raphson approach. Some of them use the 
quasi-Newton approach, where the Jacobean matrix (normally calculated at each iteration in a full global Newton Raphson) 
is approximated by a matrix, which is updated at each iteration from the previous iteration matrix. There are also hybrid 
methods such as the one by Joulia et al (1986) which use a slow but safe method in the first step (quasi-linearisation or 
successive substitution) until the algorithm is relatively near the solution and then, they use a global Newton Raphson or 
equivalent (quasi-Newton) to speed up convergence. The weakness of these hybrid methods is that they require an 
empirical criterion to switch from one method to the other and it is not easy to find a good universal criterion. 

Equation-Solving Approach with a Reduced Set of Variables 
 
A common characteristic of these methods is that the material balance equations are satisfied at each iteration. 
 
The best known of these methods is the Successive Substitution Method (SSM). A version of this method has been used 
in this work and is discussed in detail in Sections 4.4.1 and 4.4.2. 
 
The convergence characteristics of the SSM have been discussed by several authors, for example by Prausnitz et al 
(1980) and Michelsen (1982b). The theoretical rate of convergence of the SSM is linear and convergence can become 
very slow near the critical point if fugacity coefficients are calculated by the same equation of state for all phases. There 
have been many attempts to accelerate the rate convergence of the SSM. Boston and Britt (1978) used Broyden’s method 
to update the equilibrium K-values between iterations. Michelsen (1982b) used ideas from Crowe and Nishio’s (1975) 
dominant eigenvalue method to accelerate convergence. Acceleration is obviously a desired feature but it should be noted 
that this often involves the risk of overshooting the solution and entering the infeasible region (e.g. entering the single 
phase region while iterating on vapour liquid equilibrium problem) 
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4.3.2  Minimisation of Gibbs free energy 
 
The Gibbs minimisation approach (approach B) is theoretically a rigorous approach as it is intended to ensure that the 
solution is a local minimum of the Gibbs free energy and not simply a stationary point. 
 
Simply solving the system of the equilibrium equations (Equation( 146 )) theoretically ensures that the solution is a 
stationary point of the Gibbs energy but not necessarily a minimum. However it is worth noting, as Michelsen (1982b) 
demonstrated, that convergence of the successive substitution method always leads to a local minimum. 
 
A relatively small number of authors have used a Gibbs minimisation technique to solve phase equilibrium problems. 
Sometimes this was a “by-product” of the use of the minimisation technique on chemical equilibrium problems. Notably 
Gautam and Seider (1979) and Ohanomah and Thomson (1984) used the RAND quadratic programming optimisation 
algorithm to solve the problem. Gautam and Seider reported good results while Ohanomah and Thomson (1984) 
concluded that the method was not so reliable. Melhem (1997) used the Wilson-Han-Powell successive quadratic 
programming (optimisation) algorithm to solve chemical and phase equilibrium problems. 
 
In our view, there is not enough evidence on the performance, convergence characteristics, the reliability and ease of use 
of general optimisation techniques for phase equilibrium problems in comparison with the more focused “equation solving” 
techniques. The success of these optimisation techniques possibly depends to a large extent on the availability of robust 
and efficient optimisation programs.  
 

4.3.3  Choice of method 
 
As the emphasis of this work is on the robustness of the algorithm and the simplicity of implementation, a Successive 
Substitution Method (SSM) has been chosen and is described in detail in Sections 4.4.1 and 4.4.2. 
 
It should be noted that the conditions of most consequence analysis problems are not in the immediate vicinity of the 
critical point and, a successive substitution algorithm can be computationally very efficient. In the few cases of operation 
near the critical point, the SSM will inevitably become slower but it will maintain its stability and robustness. 
 
However, this method cannot readily be applied to phase equilibrium calculations involving more than two phases (e.g. 
Vapour-Liquid-Liquid) because there are a number of trivial solutions when the phase compositions are identical. If the 
thermodynamic methods are extended in the future to handle such systems (other than where the second liquid phase is 
treated as pure water) then it will be necessary to move to a Gibbs Free Energy minimisation solution. 
 

4.4 Algorithm adopted for solution of phase-equilibrium equations 

4.4.1  Isothermal or constant vapour-fraction flash 
 
A common successive substitution algorithm has been developed for the following the problems: 
 
Isothermal flash. Temperature T and pressure P are specified and Equations ( 150 ) to ( 156 ) are solved to calculate the 

vapour fraction , the vapour phase compositions y and the liquid phase compositions x; 
 

Vapour fraction and temperature flash. Temperature T and the vapour fraction  are specified and Equations ( 150 ) to 
( 156 ) are solved to calculate the pressure P, the vapour phase compositions y and the liquid phase compositions x;  
 

Vapour fraction and pressure flash. Pressure P and the vapour fraction  are specified and Equations ( 150 ) to ( 156 ) 
are solved to calculate the temperature T, the vapour phase compositions y and the liquid phase compositions x. 
 
The details of the common algorithm, shared by the above three problems, is described in Appendix B. The basic algorithm 
includes the following steps: 

1. Initialise K-values; 
In the case of the isothermal flash, the Rault law is used. 

2. Initialise the unknown variable X (, P or T); 

3. Set the objective function G(X) and solve it with respect to the unknown X; 
X is sought so that G(X)=0. 

4. Update compositions of the vapour (y) and liquid (x) phase and possibly the K-values 
K = K(T, P, y, x) from the equilibrium and mass balance equations (Equations ( 150 ) to ( 153 )). 
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5. Iterate steps 3 and 4 until convergence is achieved. 
The objective function G(X) (or equation to solve) and the iterating variable depend on the specific problem: 
 

• T, P flash 

The vapour fraction  is the iterating variable while the equation to solve is: 
 

  0 -   )(G 
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( 166 ) 

Appendix B describes how the unknown variable  is first bracketed before the Newton Raphson is initiated. 
 

• P,  flash 
The inverse of the temperature u (= 1/T ) is used as iterating variable. The equation to solve is: 
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The use of the inverse of the temperature results in a more “linear” equation and facilitates convergence. 

• T,  flash 
The pressure P is the iterating variable while the equation to solve is: 
 
 

  0 -   )(G 
ii

  ii xyP  

 

( 168 ) 

See Appendix B for the detailed equations and their derivation, the initialisation procedure, the Newton-Raphson 
iteration formula and the convergence criteria. 
 
 
 

4.4.2  Isenthalpic, isentropic or constant-energy flash 
 
These calculations include the equilibrium and mass balance equations (Equations ( 150 ) to ( 156 )), and also the 
appropriate balance equations for the type of calculations: Equations ( 157 ) and ( 158 ) for the isenthalpic flash, Equations 
( 159 ) and ( 160 ) for the isentropic flash, and Equations ( 161 ) to ( 165 ) for the constant energy flash. 
 
The solution for each of these types of flash calculation is done with a similar successive substitution method, and is all 
cases the pressure P is the second allowed specification. 
 
The first part of the algorithm determines if the specified total quantity (i.e. the enthalpy, entropy, or energy) is in the range 
of sub-cooled liquid quantities or in the range of superheated vapour quantities.  
 
If it is confirmed that a single phase is present, then a special single-phase secant algorithm is called to determine the 
unknown temperature. 
 
If the tests indicate that there are two phases present, the program performs an iteration to determine the unknown 
variables (i.e. the vapour fraction, the temperature and the compositions of the vapour and liquid phase). 
 
On each iteration, the vapour fraction is varied until the required balance is satisfied (i.e. of enthalpy, entropy or energy), 
and the iteration can be summarised by the following steps: 

1. The vapour fraction is varied in steps of 0.05 until a narrower interval is found where the appropriate balance equation 
changes sign. The solution is then bracketed and a secant method can commence. 
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2. A vapour fraction  , calculated by the secant formula, is then suggested. 

3. The constant vapour fraction flash calculation described in Section 4.4.1 is called to determine a new temperature T 
and compositions of the vapour and liquid phase. This involves another iteration inside the main iteration (an “inner 
loop” inside the main “outer loop”). 

4. The equation error and the variation of  between iterations are checked. If convergence has not been achieved the 
iteration continues from step 2. 

 
The algorithm is described in detail in Appendix C. 
 

5. VERIFICATION AND VALIDATION 
 
This section describes the tests performed to verify the modelling of mixture properties and of phase-equilibrium.   

5.1 Property and phase equilibrium calculations 
 
Verification of the key new property system thermodynamic methods (i.e. those in the preferred template set of methods), 
together with VLE calculations (unavailable in the old system) is discussed here27.   
 
The methods implemented in our new property system, such as the Peng Robinson and the Soave equations of state, 
have been extensively reviewed in the literature, tested, validated against experimental data and compared with other 
models and they are still considered a standard in the petroleum industry. Similar considerations apply to the phase 
equilibrium algorithms used for the solution of the system of equations. Therefore there is no need for any extra validation 
of the models against experimental data.  
 
The new property system results have been verified against the results of the equivalent models within a standard 
commercial process design program. The process simulator PRO/II version 4.15 of SimSci (Simulation Sciences Inc) has 
been selected for this purpose. One mixture was selected for a comprehensive comparison of the various flash problems 
and mixture properties. This is a mixture of light hydrocarbons consisting mainly of butane, propane and pentane and it 
was taken from an actual consequence analysis problem. The mixture details are shown in Table 7. 
 

Name Light Oil 

 Composition in % moles 

Ethane 0.02 

Propane 23.72 

n-Butane 61.03 

n-Pentane 14.75 

n-Hexane 0.48 

Initial temperature (K) 273.15 

Initial Pressure (Pa) 32.05 x 105 

All binary interaction parameters cij 1 

Table 7: Light Hydrocarbon Test Mixture, composition and properties 
 
The first test problem is an isothermal flash of the light oil mixture at 273.15 K and 1 atm, using the Peng Robinson (PR) 
equation of state. The results are shown in Table 8. The input stream is a sub-cooled liquid kept pressurised. When it 
expands to atmospheric pressure, it flashes about 70% of the material into the vapour phase. Table 8 shows clearly that 
the differences between the new property system and PRO/II are very small: 

• The difference on both vapour and liquid densities is under 0.1%, which is very small. This is an indication that the 
same equation of state is solved and the same roots are found; 

• The vapour fraction difference is under 1%, which is acceptable; 

• The difference on K-values, liquid mole fractions and vapour mole fractions is typically under 1% and this is considered 
acceptable. 
The main exception to this is the n-hexane K-values and mole fractions, where the percent difference is higher. An 
explanation of this difference is that the absolute value of the n-hexane K-value is relatively small and this affects the 
rounding errors and the calculation accuracy in general; 

• Absolute enthalpies and entropies were not compared as the two program use different ideal gas reference states. 
 

                                                        
27

 For a fuller description see the PROP testing documentation.  Other mixtures and cases have been verified, but the results are not included here. 
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Specifically PRO/II used 1 degree Rankine as ideal gas entropy reference, while the DIPPR equation is not valid at 
so low temperatures. The comparison is therefore done on the enthalpy (or entropy) difference between the output 
and input streams: it is the difference of enthalpies and entropies that matters in this type of calculations and not the 
absolute values. The error (or difference) for both entropies and enthalpies is less than 1%, which is considered 
acceptable. 
 

 New property system % Difference: 
 New property system - PRO/II 

Output Input Stream Liquid Output 
Stream 

Vapour 
Output 

Stream 

Output 
Stream with 

H &S 
changes 

Liquid Phase Vapour 
Phase 

T,P,H,S, VF 
and K-Value 

Mass Flow Rate, 
kmole 

100.00 28.86 71.14 100.00    

Temperature, K 273.15 273.15 273.15 273.15   0.00% 

Pressure, Pa 3.21E+06 1.01E+05 1.01E+05 1.01E+05   0.00% 

Vapour Fraction 0 0 1 0.7079    

∆ Enthalpy, J    1.49E9   0.67% 

Density, mol/m3 11.084 10.371 0.046 3.024 -0.09% 0.01%  

∆ Entropy, J/K    5.73E+06   0.67% 

Molecular Mass 56.99 61.91 54.97 56.99 0.07% 0.06%  

Output Vap. Fraction 0 0 1 0.7079   0.75% 

Components Mole Fractions  K-values Mole Fractions K-values 

n-butane 0.6103 0.6023 0.6136 1.02E+00 -0.34% 0.13% 0.47% 

Ethane 0.0002 0.0000 0.0003 1.85E+01 -0.64% -0.69% -0.05% 

n-hexane 0.0048 0.0144 0.0009 6.45E-02 2.07% -2.15% -4.13% 

n-pentane 0.1475 0.3126 0.0794 2.56E-01 0.68% 1.09% 0.40% 

Propane 0.2372 0.0708 0.3058 4.31E+00 -0.46% -0.53% -0.06% 

Table 8: Flash of light oil (T=273.15K,P=1.013Pa; Peng Robinson)  
 
The second test problem is the same isothermal flash of the light oil mixture at 273.15 K and 1 atm, but using the SRK-
API model (Soave Redlich Kwong - API implementation, Graboski and Daubert, 1978). The results are shown in Table 
9. As it is expected the results of SRK equation of state are very similar to the results of the PR equations of state. The 
differences between new property system and SimSci results are even smaller than with the PR equation. The vapour 
fraction difference is only 0.23%, which is easily acceptable. 
 
A number of other runs were performed to verify the correctness of implementation of the other phase equilibrium 
problems. The tables below present the most important output variables from these tests. 
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 New property system % Difference: 
 Spreadsheet - PRO/II 

Output Input Stream Liquid 

Output 
Stream 

Vapour 

Output 
Stream 

Output 

Stream with 
H &S 

changes 

Liquid Phase Vapour 

Phase 

T,P,H,S, VF 

and K-Value 

Mass Flow Rate, 
kmole 

100.00 30.64 69.36 100.00    

Temperature, K 273.15 273.15 273.15 273.15   0.00% 

Pressure, Pa 3.21E+06 1.01E+05 1.01E+05 1.01E+05   0.00% 

Vapour Fraction 0 0 1 0.6937    

Enthalpy, J    1.48E+09   0.22% 

Density, mol/m3 9.819 9.189 0.046 2.847 -0.03% 0.00%  

Entropy, J/K    5.66E6   0.21% 

Molecular Mass 56.99 61.83 54.86 56.99 0.02% 0.02%  

Output Vap. Fraction    0.6937   0.23% 

Components Mole Fractions  K-values Mole Fractions K-values 

n-butane 0.6103 0.6059 0.6122 1.01E0 -0.13% 0.05% 0.18% 

ethane 0.0002 0.0000 0.0003 1.89E1 -0.08% -0.21% -0.14% 

n-hexane 0.0048 0.0137 0.0009 6.20E-2 0.95% -3.27% -4.18% 

n-pentane 0.1475 0.3090 0.0762 2.46E-1 0.18% 0.37% 0.19% 

propane 0.2372 0.0713 0.3105 4.36E0 0.11% -0.19% -0.30% 

Table 9: Isothermal flash of light oil (T=273.15K,P=1.013Pa; Soave-Redlich-Kwong (API)) 
 
Table 10 shows the results of the isenthalpic flash. The temperature difference (0.01%) is very small while the vapour 
fraction (0.27%) is also acceptably small. 
 
Table 11 shows the results of the isentropic flash. There appears to be a good agreement between isentropic temperatures 
(0.04%). The vapour fraction relative difference (-6.4%) is not negligible and some time was spent investigating the entropy 
calculation as a possible source of the difference.  
 
However no error was found. In absolute terms, the difference between vapour fractions is 0.005, which is still small. 
 

Output Variable New property system PRO/II Value 

Temperature (K) 260.16 260.20 
Vapour Fraction 0.0909 0.0906 

Table 10: Isenthalpic flash of light oil (P=1.013Pa; Soave-Redlich-Kwong (API)) 
 

Output Variable New property system PRO/II Value 

Temperature (K) 259.76 259.80 
Vapour Fraction 0.0758 0.0756 

Table 11: Isentropic flash of light oil (P=1.013Pa; Soave-Redlich-Kwong (API)) 
 
Table 12 and Table 13 show the results of the dew/ bubble pressure and dew/ bubble temperature calculations. The 
differences range between 0.01% for temperatures and 0.1% for pressures. This is considered a satisfactory 
agreement. 
 
 
 
 

Output Variable New property system PRO/II Value 

Dew Pressure, Pa 7.502 x104 7.520 x104 
Bubble Pressure, Pa 1.745x105 1.742x105 

Table 12: Dew and bubble pressure of light oil (T=273.15K; Soave Redlich Kwong (API)) 
 

 

Output Variable New property system PRO/II Value 

Dew Temperature (K) 413.027 412.995 
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Bubble Temperature (K) 405.30 405.26 

Table 13: Dew and bubble temperature of light oil (P=32.05x105Pa, Soave-Redlich-Kwong (API)) 
 

5.1.1  Vapour Sonic Velocity at 0 C and 1.01325 bar 
 

Component DNV property system 
{PHAST-MC template} 
[numerical solution] 

(m/s) 

DNV property system 
{PHAST-MC template} 
[analytical solution] 

(m/s) 

Literature (Lide, 1994) 
(m/s) 

Air (dry) 331.54 331.79 331.45 

Ammonia 415.63 415.86 415 

Carbon Monoxide 336.83 337.07 338 

Carbon Dioxide 258.08 258.21 259 

Chlorine 204.39 204.50 206 

Ethylene 317.48 317.62 317 

Hydrogen 1260.38 1261.27 1284 

Methane 430.55 430.79 430 

Nitrogen 336.84 337.09 334 

Oxygen 314.68 314.91 316 

 

5.1.2  Vapours at 97.1 C and 1.01325 bar 
 

Component DNV property system 
{PHAST-MC template} 
[numerical solution] 

(m/s) 

DNV property system 
{PHAST-MC template} 
[analytical solution] 

(m/s) 

Literature (Lide, 1994) 
(m/s) 

Acetone 237.42 237.47 239 

Benzene 202.42 202.44 202 

Ethanol 269.61 269.66 269 

Methanol 336.38 336.50 335 

 

5.2 Acid Association 
 
The theory presented above for acid association modelling has been compared with data from a DuPont manual.  
Though not reproduced here, a summary of these comparisons has been included in previous PHAST release manuals, 
e.g. PHAST 4.2. 
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6. FUTURE DEVELOPMENTS 
 
The following further work is proposed. 
 

1. Binary interaction parameters 
  
           The property system only allows for one set of binary interaction parameters for a mixture, but these parameters 

can potentially be used for more than one purpose. They can be used in the calculation simple temperature-
dependent properties and in the equations of state (Soave Redlich Kwong and Peng Robinson). Clearly this 
presents a problem, since the same set of parameters is unlikely to be valid in more than one context. It also 
means that the convention used for the values of the interaction parameters differs from the normal standards in 
the literature. 

 
 As it happens, in PHAST 6 the user has no mechanism whereby he can change the mixing rules used for the 

simple temperature-dependent properties, and so the interaction parameters are never used in this context. They 
are however shared by the equation of state methods. It would be preferable if a separate set of interaction 
parameters could be supplied for each method. 

2. Water as a separate phase 
  
           Appendix F to this theory manual documents the treatment of water as a separate liquid phase. This should be 

added to the new property system. 

3. Solution algorithms for phase equilibrium 
  
           The current algorithm is fine for systems involving 2-phase (i.e Vapour-Liquid) equilibrium. If, in the future, there is 

a need to handle 3 (or more) phases (e.g. VLLE) there would probably be a need to move to a Gibbs Energy 
minimisation technique such as that of Michelson. These have the advantage that there is no a priori assumption 
about the number of phases present, as they tend to operate in a loop on an ever increasing number of phases: 

a. Perform minimisation 

b. Test stability 

c. If Unstable, increase number of phases and go back to 1. 
  
           Fortunately, the stability test normally produces good estimates for the starting point of the next iteration. 
  

It should be noted that the chosen SSM method implicitly defines a maximum of two phases. If this is used on a 
system whose interaction parameters would produce more than two phases, the results from the SSM can be 
wildly inaccurate. Since only SRK and PR are currently implemented, you are unlikely to get into this problem. 
However, if you were to implement (say) NRTL as a method for polar mixtures then it becomes quite common. 

4. Emulating pseudo-component properties and equilibrium in the new property system 
  
           A number of properties in the new property system are either not appropriate for mixtures (e.g. saturated properties, 

heat of vaporisation) or are calculated by suspect methods (e.g. liquid enthalpy, liquid entropy, heat of 
vaporisation).  These obsolete properties and suspect methods are included in the new property system, but 
should not be used apart from where PHAST 6.4 methods need to be reproduced.  It is recommended that new 
development does not use obsolete properties, and that the preferred template set of methods become the 
default for use within PHAST / SAFETI.  Obsolete properties should be removed when no longer used in any 
models. 

 
 For equilibrium calculations, the models used a saturation curve Psat(T) to determine the material VLE (this 

functionality was not provided by the old property system).  This logic is now included in the PROP model, but 
the inclusion of a new fugacity method could mean that the standard property system equilibrium calculation 
could emulate the results of this.  This remains to be tested, and there are concerns that it may prove too slow 
for use in the models.  The approach is documented in Appendix I. 

5. Acid association properties 
 
The acid association properties (specifically acid association factor and molecular weight) appear to be 
implemented wrongly in comparison to the theory documented here, and in comparison to the experimental data 
taken from the PHAST 4.2 manual.  This issue needs further investigation. 
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APPENDICES 

Appendix A. Application guidelines for physical property system 

 
This appendix includes guidelines for applying the physical property system. First a brief recapitulation of basic principles 
is given as discussed in the body of this report. Subsequently an overview of available ‘templates’ of properties and 
methods is given. This e.g. define the methods available for mixing rules of thermodynamic properties.  

A.1 Basic Principles 

 
Phase Equilibrium 
The mole balance equation for vapour / liquid equilibrium is: 
 

iii xyz )1(    

 
If we define the equilibrium constant (K value) as 
 

i

i

i
x

y
K   

 
then the mass balance equation can be rearranged to compute the equilibrium compositions: 

)1(1 
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iii xKy   

 
Therefore, the essence of solving the equilibrium is one of determining the K values. 
 
Fugacity 
The fundamental equation governing the vapour / liquid equilibrium of a mixture is very simple – it states that the 
fugacity of each component must be equal in both phases: 
 

l

i

v

i ff   )1( ni   

 
The problem therefore is one of relating the fugacity of the component in each phase to the independent variables of 
Temperature(T) and Pressure(P).  
 
The methods are as follows: 
 

1. The Ideal Solution 
 The simplest method for calculating fugacity is the “ideal” solution which uses a combination of Raoult’ law and 

Daltons’s law, such that: 
 

 Pyf i

v

i   

 
sat

ii

l

i Pxf   

 
 When written in terms of the equilibrium constant we obtain: 
 

 
P

P

x

y
K

sat

i

i

i

i   

 
 This is clearly reasonable in that, for a pure component, the K value is unity (and hence equilibrium is established) 

when the saturated vapour pressure equals the system pressure – in other words, the component boils. 
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           It is also very convenient because the K value depends only on temperature and pressure, and not on the 
composition of the phases. 
 
The ideal solution model is certainly the most appropriate model for pure components because the saturated 
vapour pressure equation is normally a correlation of experimental determined data. 
 
It also gives reasonable results for mixtures of non-polar components (e.g. hydrocarbons) at low pressures where 
the temperatures required to achieve equilibrium will not be far removed from the component boiling points. 
When these conditions are no longer applicable, different methods of calculating fugacity need to be employed. 
 

2. Deviation from Ideal Solution 
The ideal solution makes the following assumptions: 

- the vapour obeys the ideal gas law )( nRTPV  . 

- the liquid is incompressible. 

- there are no energy interactions between the components. 
 
There are therefore two main reasons for deviations from ideal behaviour: 

- volumetric effects – arising largely from operating at elevated pressures 

- energetic effects – arising largely from the polar nature of one or more of the components 
 
Historically, these deviations have been tackled in different ways. The volumetric effects have been addressed 
by using Equations of State to represent the PVT behaviour of the mixture. The energetic effects have been 
addressed through energy-interaction models (usually only for the liquid phase) leading to the Activity Coefficient 
models. 
 
Therefore, the appropriate choice of model can be illustrated diagrammatically as: 

 

3. Equations of state 
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Many, many equations of state have appeared in the literature – far too many to mention them all. The most 
frequently used, because they combine relative simplicity with a good degree of accuracy, are the cubic equations 
of state. Of these, the commonly used ones are: 

- Redlich-Kwong (RK) 

- Soave-Redlich-Kwong (SRK) 

- Peng-Robinson (PR) 
 
These equations are able to represent the PVT behaviour of both the vapour and liquid phases. They are 
therefore able to completely describe the behaviour of the system at all conditions providing the same EOS is 
applied to both phases and this would be strongly recommended.  
 
In terms of calculating fugacity, the Soave modification to the RK equation to produce the SRK equation 
significantly improved its accuracy in predicting vapour / liquid equilibrium and so would normally be used in 
preference to RK. 
 
The choice between SRK and PR is less clear cut. The performance of both is very similar, and it is usually a 
question of user preference. 
 
Very often the SRK and PR equations are used without binary interaction parameters with adequate accuracy. 
Interaction parameters (determined from experimental data, and sometimes available in published literature) can 
improve the accuracy further for specific circumstances. They can also be used to extend the applicability of the 
equations to the light gases and slightly polar components that are frequently present in hydrocarbon mixtures 
e.g. Hydrogen, Nitrogen, Hydrogen Sulphide, Carbon Monoxide, and Carbon Dioxide. 

4. Activity coefficient models28 
The three most commonly used Activity coefficient models are: 

- Wilson 

- NRTL (Non-Random, Two Liquid) 

- UNIQUAC (Unified Quasi Chemical) 
 
Of these, the Wilson equation is the only one that is not capable of also representing liquid / liquid equilibrium in 
partially miscible systems. However, this is largely irrelevant (and sometimes an advantage) when no 3-phase 
flash algorithm is available. 
 
The models only apply to the liquid phase fugacity. The method for the vapour phase is chosen separately. 
However, because generally the activity coefficient model is only applicable at low pressure, it is often sufficient 
to use the ideal model for the vapour phase. Whatever choice is made, the fact that the models are different 
means that you can never achieve the correct predictions for near-critical behaviour. 
 
To use an activity coefficient model successfully, binary interaction parameters are essential. Without them, the 
model reverts effectively to the ideal solution model. Therefore, the choice of model is often determined by the 
availability of suitable interaction parameters. 
 
When binary interaction parameters are unavailable, the UNIFAC method can be used either in total, or more 
commonly, to fill in the missing pairs by estimating the interaction parameters for one of the models above. 
UNIFAC is based on the UNIQUAC equation but works in terms of functional groups (e.g. CH3, OH, etc) rather 
than components. The interaction parameters between functional groups have been determined by regression 
of large amounts of experimental data for many different components, and hence the method is capable of 
predicting the behaviour of components for which no data is available. 
 

5. “Combination” models29 
 
Historically, the calculation of equilibrium for polar mixtures at elevated pressures has been a grey area.  
 
Early attempts at representing such systems usually involved the use of mixed methods – e.g. an equation of 
state for the vapour, and an activity coefficient method for the liquid. 
 

                                                        
28

 Note that there are currently no activity coefficient models available in the property system 
29

 Note that there are currently no “combination” models available in the property system 
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Not only are such mixed methods unable to describe near critical conditions, it was also generally necessary to 
make the liquid phase interaction parameters temperature dependant. But this has the drawback of needing 
experimental data at elevated temperatures in order to determine the temperature dependency of the parameters. 
 
Attempts were also made to use more complex mixing rules for the parameters of the equations of state. 
 
It is believed that the most successful approach has been that adopted by equations of state based on the Huron-
Vidal approach, especially the MHV2 (Modified Huron-Vidal 2nd Order) equation. The essence of such models is 
as follows: 
   

Take the Gibbs Free Energy expression from an equation of state such as SRK is 
 

   ),,( zPTfg EOS

E

EOS   

 
 and the Gibbs Free Energy expression from an activity coefficient such as Wilson is 
 

   ),,( zPTfg ACT

E

ACT   

  and formulate that they must be equal.  
 
This gives an expression that is impossible to solve. However, by making certain restrictions (e.g. at zero pressure 
in MHV2), a more reasonable expression can be obtained that results (with some further approximations) in an 
expression that gives the parameters of the equation of state as a mixing rule based on the parameters of the 
activity coefficient model. 
 
This equation of state, with this mixing rule in place, is applied to both the vapour and liquid phases. It can be 
shown that in mixtures where both low and high pressure experimental data is available, this model is able to 
quite accurately predict the high pressure data using only interaction parameters derived from the low pressure 
data. 
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A.2 Application Guidelines 

 
The available methods for selection in the initial implementation of the property system are limited so this section is as 
much about what cannot be modelled accurately as what can be.  
 
Available Templates 
Generally it is not necessary to define a method for each property individually. Instead it is often satisfactory to select from 
a predefined ‘template’ of properties and methods. To date the following templates have been defined. Adding more is a 
simple procedure. 
 

  

Phast 64 A set of properties and methods mimicking the 
behaviour of the property system in PHAST 
version 6.4230. Note that for mixtures, all ‘constant’ 
properties must be defined.  This is the only 
template available to users in SAFETI 6.5.  

Phast MC A set of properties (same list as above) and 
methods based largely on using Soave Redlioch 
Kwong where applicable and simple mixing rules 
are used for other properties.  

Peng Robinson A shorter list of properties (excluding DNV 
properties) where Peng Robinson is used where 
applicable and simple mixing rules are used  for 
other properties  

Soave Redlich Kwong A shorter list of properties (excluding DNV 
properties) where Soave Redlich Kwong  is used 
where applicable and simple mixing rules are used  
for other properties 

Ideal and SRK The same as above except that the vapour and 
liquid fugacity methods are set to ‘ideal’.  

 
Available methods 
Apart from simple mole and mass mixing rules the following specific methods are available: 
 

 Vapour Liquid 

Fugacity Ideal 
Soave Redlich Kwong 
Peng Robinson 
Redlich Kwong 

Ideal 
Soave Redlich Kwong 
Peng Robinson 
Redlich Kwong 

Density and 
Compressibility 

Ideal 
Soave Redlich Kwong 
Peng Robinson 
Redlich Kwong 
Virial 

Soave Redlich Kwong 
Peng Robinson 
Redlich Kwong 
Costald(1) 
 

Enthalpy Ideal 
Soave Redlich Kwong 
Peng Robinson 
Redlich Kwong 
Virial 

Soave Redlich Kwong 
Peng Robinson 
Redlich Kwong 
 
 

Entropy Ideal 
Soave Redlich Kwong 
Peng Robinson 
Redlich Kwong 
Virial 

Soave Redlich Kwong 
Peng Robinson 
Redlich Kwong 
 

Viscosity Kouzel Kendall Monroe 

NFPA  Flammable  
 Toxic 
 Reactivity 

Maximum Component Value Maximum Component Value 

Flammable Toxic Flag DNV DNV 

 
Notes: 
(1) This implementation uses a simple mixing rule on the DIPPR Saturated Liquid Density coefficients, which is then 

pressure corrected. 

                                                        
30

 Some properties have been changed due to errors being fixed or equation of state methods being adopted (combustion Ct , flammable/toxic determination, liquid 

entropy and liquid enthalpy. 
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All other stream properties use a simple mixing rule. The mixing rule is appropriately chosen from one of mole ideal, mass 
ideal, mole Le Chatelier or mass Le Chatelier. 
 
Many properties also have a ‘constant’ method available which means that the property for a phase must be specifically 
set and will never change until reset. Constant properties are therefore independent of temperature, pressure and 
composition. 
 
For a detailed description of the methods themselves see the body of this report. 
 
Equations of state 
 
Equations of state are generally applicable over a wide range of temperature and pressure and find wide use in gas 
processing and refining applications and some petrochemical applications. They can be used to predict phase behaviour 
close to the critical point. The equations of state offered here are not applicable when polar components are present or 
when the concentrations of gases such as H2, N2, CO2, CO and H2S in the liquid phase are higher than a few percent. 
 
Redlich Kwong and Virial have largely been superseded and are included for reasons of backward compatibility with 
PHAST 6.2. When an equation of state is to be used the choice between Soave Redlich Kwong or Peng Robinson is 
largely a matter of user preference. The results are very similar except for liquid densities where Peng Robinson is 
marginally better. In general however, none of the available equations of state are recommended for liquid densities.  
 
Phase equilibrium calculations 
There can only exist a single vapour phase and a single liquid phase. Solid phases and solid equilibrium is not modelled 
nor are system consisting of two or more immiscible liquid phases.  
 
Water handling 
Water is not treated in any special way. Water is a DIPPR component like any other.  Its properties are calculated using 
whatever methods are selected for a particular property.  There are no supported ASME Steam Tables or other specialised 
methods. Similarly, for equilibrium calculations, water is not treated in any special way that might enable a second liquid 
phase to exist, be that phase pure water or otherwise. 
 
Pure component streams 
Phase behaviour within the range of the vapour pressure data should be modelled using vapour pressure i.e., ideal 
fugacities. At temperatures or pressures above the limit of the vapour pressure equation it will be better to use an equation 
of state such as Soave Redlich Kwong. 
 
Polar mixtures 
Polar mixtures that form azeotropes, more than one liquid phase or mixtures that contain different types of components 
cannot be modelled accurately using the methods offered here. 
At low pressure, phase behaviour for mixtures such as methanol, ethanol, propanol, etc should be modelled using vapour 
pressure data, i.e., ideal fugacities. These kinds of mixtures are quite well behaved with little interaction between the 
component species.  
 
Hydrocarbon applications with light gases 
Use Soave Redlich Kwong or Peng Robinson as long as there are no polar components present. If gases such as N2, 
CO2, H2S, H2 or CO are present then interaction parameters between these components and the hydrocarbons should 
also be supplied. Use the Costald liquid density method. 
 
Petrochemical applications 

1. Light hydrocarbons 
 

      Use Soave Redlich Kwong or Peng Robinson as long as there are no polar components present. If gases such 
as N2, CO2, H2S, H2 or CO are present then interaction parameters between these components and the 
hydrocarbons should also be supplied. Use the Costald liquid density method. 

2. Aromatics 
 

      At low pressures when the components are similar (e.g., xylene isotopes) you can use Ideal fugacity calculations 
but with increased CPU time you can also use Soave Redlich Kwong or Peng Robinson. Use the Costald liquid 
density method. 

  
      If non-aromatics are also present the system cannot be accurately modelled using the equations of state currently 

available here. 
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Appendix B. DIPPR Equations (including derivatives and integrals) 

 
This Appendix includes a list of the DIPPR equations used for calculating many temperature-dependent properties. 

 

Equation 
Number 

Equation 
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Table 14: DIPPR® Equations for temperature-dependent DIPPR properties 

 
In  

Table 14: 
 
Y is the property 
T is the temperature, K 
Tr is the reduced temperature (T/Tcritical) 
 
Each material has its own values of the coefficients A, B, C, D, E for a given property, defined as constant properties for 
the material, and obtained from the DIPPR® database.  DIPPR also provides the temperature limits for evaluation of the 
property, and property value at those limits.  These are used by the new property system. 
 
The remainder of this appendix includes derivatives and integrals to the above equations, which may be required as part 
of property evaluations in applications to consequence models. 
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DIPPR 100 

Equation:   
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First Derivative:  
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Integral YdT:  Not implemented 
 
Integral (Y/T)Dt: Not implemented 
 
DIPPR 102 

Equation:   

2
1

T

D

T

C

AT
Y

B



  

 

First Derivative: Let 
BATU  and 

2
1

T

D

T

C
V    

 

   Then 
1 BABT

dT

dU
and 

32

2

T

D

T

C

dT

dV
 .   So, 

 

   









dT

dV
U

dT

dU
V

VdT

dY
2

1
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Second Derivative: 
2

2

2

)1(  BTBAB
dT

Ud
 

 

   
432

2 62

T

D

T

C

dT

Vd
  

 

   


















dT

dV
U

dT

dU
V

dT

dV

VdT

Vd
U

dT

Ud
V

VdT

Yd
32

2

2

2

22

2 21
 

 
Integral YdT:  Not implemented 
 
Integral (Y/T)dT: Not implemented 
 
DIPPR 104 

Equation:   
983 T

E

T

D

T

C

T

B
AY   

 

First Derivative: 
10942

983

T

E

T

D

T

C

T

B

dT

dY
  

 

Second Derivative: 1110532

2 9072122

T

E

T

D

T

C

T

B

dT

Yd
  

 

Integral YdT:  
872 872

)ln(
T

E

T

D

T

C
TBATYdT   

Integral (Y/T)dT: 
983 983

)ln(
T

E

T

D

T

C

T

B
TAdT

T

Y
  

 
DIPPR 105 

Equation:   

























D

C

T

ABY
11

 
 

First Derivative: Reformulate as )ln(1ln)ln( B
C

T

B

A
Y

D


















  

 

   Then )ln(1
))(ln(

)1(

B
C

T

C

D

dT

Yd
D


















  

 

    
dT

Yd
Y

dT

dY ))(ln(
  

 

Second Derivative: )ln(1
1))(ln(

)2(

2

2

B
C

T

C

D

C

D

dT

Yd
D

















 








  

 

   























2

2

2

2

2 ))(ln())(ln(

dT

Yd

dT

Yd
Y

dT

Yd
 

 
Integral YdT:  Not implemented 
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Integral (Y/T)dT: Not implemented 
 
Notes:   1. Equation cannot be evaluated for T > C, therefore C must be > 0 
   2. The B coefficient cannot be negative 
 
DIPPR 106 

Equation:   
)( 32

)1( rrr ETDTCTB

rTAY


  

 

First Derivative: Reformulate as )1ln()()ln()ln( 32

rrrr TETDTCTBAY   

 

   Then if 
32

rrr ETDTCTBU   , 

c

rr

T

ETDTC

dT

dU
232 

  

 

   and if )1ln( rTV  , 
TTdT

dV

c 


1
 

 

   
dT

dU
V

dT

dV
U

dT

Yd


))(ln(
 

 

   
dT

Yd
Y

dT

dY ))(ln(
  

 

Second Derivative: 
22

2 62

c

r

T

ETD

dT

Ud 
   

 

   
22

2

)(

1

TTdT

Vd

c 
  

 

   2

2

2

2

2

2

2
))(ln(

dT

Ud
V

dT

dU

dT

dV

dT

Vd
U

dT

Yd
  

 

   























2

2

2

2

2 ))(ln())(ln(

dT

Yd

dT

Yd
Y

dT

Yd
 

 
Integral YdT:  Not implemented 
 
Integral (Y/T)dT:  Not implemented 
 

Notes:   Cannot be evaluated if 0.1rT  
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DIPPR 107 

Equation:   

22

)cosh(

)(

)sinh(

)(































T
E
T

E

D

T
C
T

C

BAY  

 

First Derivative: Let 
T

C
p  and 

T

E
q   

 

   Then 
2T

C

dT

dp
  ; 

32

2 2

T

C

dT

pd
 ; 

2T

E

dT

dq
  ; 

32

2 2

T

E

dT

qd
  

 

   Then let 
)sinh( p

p
U  and 

)cosh(q

q
V   

 

   Therefore     
U

p
p )sinh(  

 

   
2

)cosh(
))(sinh(

U

dp

dU
pU

p
dp

pd


  

 

   
p

pUU

dp

dU )cosh(2
  

 

   
dT

dp

dp

dU

dT

dU
  

 

   And  
V

q
q )cosh(  

 

   
2

)sinh(
))(cosh(

V

dq

dV
qV

q
dq

qd


  

 

   
q

qVV

dq

dV )sinh(2
  

 

   
dT

dq

dq

dV

dT

dV
  

 

   So  
22 DVBUAY   

 

   
dT

dV
DV

dT

dU
BU

dT

dY
22   

 

Second Derivative: From above    )cosh(2 pUU
dp

dU
p   
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   Differentiating    )cosh(2)sinh(2

2

2

p
dp

dU
UpU

dp

dU

dp

dU

dp

Ud
p   

 

   So 
p

p
dp

dU
UpU

dp

Ud
)cosh(2)sinh(2

2

2


  

 

   

2

2

2

2

2

2

2











dT

dp

dp

Ud

dT

pd

dp

dU

dT

Ud
 

 

   And similarly )sinh(2 qVV
dq

dV
q   

 

   Differentiating    )sinh(2)cosh(2

2

2

q
dq

dV
VqV

dq

dV

dq

dV

dq

Vd
q   

 

   So 
q

q
dq

dV
VqV

dq

Vd
)sinh(2)cosh(2

2

2


  

 

   

2

2

2

2

2

2

2











dT

dq

dq

Vd

dT

qd

dq

dV

dT

Vd
 

 

   And finally 











































2

2

22

2

2

2

2

22
dT

dV

dT

Vd
VD

dT

dU

dT

Ud
UB

dT

Yd
 

 

Integral YdT:   K
T

EDE

T
C

BC
ATYdT  )tanh(

)tanh(
 

 
Integral(Y/T)dT:

    K
T

E
T

E
T

ED
T

C

T
C
T

C

BTAdT
T

Y















 )ln(cosh()tanh()()sinh(ln

)tanh(

)(
)ln(  

 
 
DIPPR 114 

Equation:   
523

2
52432

2
2 XDCDXXC

ADXACXB
X

A
Y   

 

   where 
rTX 1  

First Derivative: 
42322

2

2

222 XDCDXXCADXAC
X

A

dX

dY
  
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cTdT

dX 1
  

 

   
dT

dX

dX

dY

dT

dY
  

 

Second Derivative: 
3222

3

2

2

2

4622
2

XDCDXXCAD
X

A

dX

Yd
  

 

   

2

2

2

2

2











dT

dX

dX

Yd

dT

Yd
  (since 0

2

2


dT

Xd
) 

 
Integral YdT:  Not implemented 
 
Integral (Y/T)dT: Not implemented 
 
DIPPR 115 

Equation:     









2

2lnexp
T

E
DTTC

T

B
AY  

 

First Derivative: 
32

2
2

))(ln(

T

E
DT

T

C

T

B

dT

Yd
  

 

   
dT

Yd
Y

dT

dY ))(ln(
  

 

Second Derivative: 4232

2 6
2

2))(ln(

T

E
D

T

C

T

B

dT

Yd
  

 

   























2

2

2

2

2 ))(ln())(ln(

dT

Yd

dT

Yd
Y

dT

Yd
 

 
Integral YdT:  Not implemented 
 
Integral (Y/T)dT: Not implemented 
 
DIPPR 116 

Equation:   3
4

3
2

35.0 EXDXCXBXAY   

  

   where 
rTX 1  

 

First Derivative: 3
1

3
1

65.0

3

4

3

2
35.0 EXDCXBX

dX

dY



 

 

   

cTdT

dX 1
  

 

   
dT

dX

dX

dY

dT

dY
  
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Second Derivative: 
3

2
3

4
65.1

2

2

9

4

9

2
2275.0

  EXCXBX
dX

Yd
 

 

   

2

2

2

2

2











dT

dX

dX

Yd

dT

Yd
  (since 0

2

2


dT

Xd
) 

 
Integral YdT:  Not implemented 
 
Integral (Y/T)dT: Not implemented 
 

Notes   Cannot be evaluated if 0X  
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Appendix C. Supercritical Extrapolation Options 

 
For any of the DIPPR equations the user can choose to use an extrapolation method when the temperature is greater 

than the critical temperature (or a specified fraction thereof) called xT  in the equations below. Four possible extrapolation 

options are available. 
 

Constant value above xT  

 

TxYY   

 

0
dT

dY
 

 

0
)ln(


dT

Yd
 

 

0
2

2


dT

Yd
 

 

0
)ln(

2

2


dT

Yd
 

 

Constant First Derivative above xT  

 

Tx

xTx
dT

dY
TTYY 








 )(  

 

TxdT

dY

dT

dY








  

 











dT

dY

YdT

Yd 1)ln(
 

 

0
2

2


dT

Yd
 

 

0
)ln(

2

2


dT

Yd
 

 
 

Constant Second Derivative above xT  

 


































Tx

x

Tx

xTx
dT

Yd
TT

dT

dY
TTYY

2

2

)(
2

1
)(  
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TxTx

x
dT

dY

dT

Yd
TT

dT

dY



















2

2

)(  

 











dT

dY

YdT

Yd 1)ln(
 

 

Tx
dT

Yd

dT

Yd










2

2

2

2

 

 
2

2

2

2

2 )ln(1)ln(










dT

Yd

dT

Yd

YdT

Yd
 

 
DNV Supercritical Extrapolation Option 

 
Unlike the other options this works by computing a modified temperature and using this in the standard DIPPR 
equation. 
 
The modified temperature is given by: 
 





















 


2

mod 1
T

TT
TT x

 

 
 
When the modified temperature is passed into the standard equation functions, the returned values computed 

will be for 

moddT

dY
, 

2

mod

2

dT

Yd
 etc. from which we need to calculate 

dT

dY
, 

2

2

dT

Yd
 etc. This can be 

accomplished from the knowledge that 

 
T

TT
TT x

2

mod

)( 
  

 

 2

2

mod )()(2
1

1 xx TTTTT
TdT

dT
  

 
Which when simplified gives 
 

2

2

mod

T

T

dT

dT x  

 
And the second differential 
 

3

2

2

mod

2

2
T

T

dT

Td x  

 
 
First Derivative 
 

mod

2

2

mod

mod dT

dY

T

T

dT

dT

dT

dY

dT

dY x  

 
First Log Derivative 
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mod

2

2

mod

mod

)(ln11)(ln

dT

Yd

T

T

dT

dT

dT

dY

YdT

dY

YdT

Yd x  

 
Second Derivative 
 

2

mod

2

mod

2

mod

2

mod

2

2

2

dT

Td

dT

dY

dT

dT

dT

Yd

dT

Yd









  

 
So 
 
















mod

2

mod

2

2

2

2

2

2

2 2

dT

dY

TdT

Yd

T

T

T

T

dT

Yd xx  

 
Second Log Derivative 
 

dT

dY

YdT

Yd

YdT

Yd
22

2

2

2 11ln
  

 
So 
 

2

2

mod

2

mod

2

mod

2

2

2

2

2

2

2 121ln

T

T

dT

dY

YdT

dY

TdT

Yd

T

T

T

T

YdT

Yd xxx 












  

 
















modmod

2

mod

2

2

2

2

2

2

2 121ln

dT

dY

YdT

dY

TdT

Yd

T

T

T

T

YdT

Yd xx  

 
























mod

2

mod

2

2

2

2

2

2

2 121ln

dT

dY

YTdT

Yd

T

T

T

T

YdT

Yd xx  



 

Theory | Property System |  Page 71 

  

Appendix D. Derivatives and integrals for ideal mixing rules 

 
Available mixing rules for calculating simple properties for a mixture have been described in Section 3.2.1 Currently 
implemented are the ideal-mixing rule and the Le Chatelier’s mixing rule.  
 
This Appendix includes expressions for derivatives and integrals of the mixing rules, which are required when applying 
these rules to consequence models. Appendix D.1 includes the equations for a general mixing rule, Appendix D.2 to the 
ideal-mixing rule, and Appendix D.3 for the Le Chatelier’s mixing rule. 
 
In this appendix the following notation is adopted: 
 

- xi (i=1,…N) are individual mole fractions and Yi the individual property 

- Ymix is the mixture property to be obtained via a mixing rule 
 

D.1 Simple Mixing Rules 

 

The simple mixing rules can all be written in a generic form as: 
 

 ),( iimix YxfY   

 
From this, the following relationships follow: 
 

 
dT

Yxfd

dT

dY iimix )],([
  

 

 2

2

2

2 )],([

dT

Yxfd

dT

Yd iimix   

 

 )),(ln()ln( iimix YxfY   

 

 
dT

dY

YdT

Yd mix

mix

mix 1)][ln(
  

 

 

2

2

2

2

2 )][ln(1)][ln(










dT

Yd

dT

Yd

YdT

Yd mixmix

mix

mix  

 

   dTYxfdTY iimix ),(  

 

 dT
T

Yxf
dT

T

Y iimix

 
),(

 

 
 
 
 
 
 
 

D.2 Ideal Mixing 

 



 

Theory | Property System |  Page 72 

  

 
 





i

ii

mix
x

Yx
Y  

 



 









i

i
i

mix

x

dT

dY
x

dT

dY
 

 



 









i

i
i

mix

x

dT

Yd
x

dT

Yd
2

2

2

2

 

 

 


 
 

i

ii

mix
x

dTYx
dTY  

 



 












i

i
i

mix

x

dT
T

Y
x

dT
T

Y
 

 

D.3 LeChatelier Mixing 
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
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Appendix E. Solution method for cubic equations of state 

 
To determine the condition of the material at a given temperature T and pressure P, the program must iterate to solve the 
equation of state.  
 

E.1 Evaluating Real and Complex Roots 
 
The equation of state expresses compressibility as a cubic of the generalised form: 
 

 023  dczbzz  

 

( 169 ) 

The substitution z = x – b/3 transforms this into ‘depressed’ form: 
 

 
03  qpxx  

 

( 170 ) 

Where p and q are given by: 
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( 171 ) 

If we then substitute x = y – p/3y we get 
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( 172 ) 

This can be expressed as a quadratic in y3 by multiplying through: 
 
 

 

    0
3

3
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( 173 ) 

 
We can determine if this has real solutions by evaluating R such that: 
 

 

427

23 qp
R   

( 174 ) 

 
If R < 0 there are 3 real, unequal roots (i.e. the equation goes through both a maximum and a minimum).  These can be 
calculated using the logic given in Perry. 
 
If R = 0 there are 3 real roots, at least two of which are equal (i.e. the equation goes though one minimum or maximum 
and a point of inflexion). Again the Perry logic can be used. 
 
When R > 0 the roots of the quadratic in y3 are complex, and hence 1 real root and two imaginary roots for the cubic in y.  
The roots of the cubic in y are then31: 
 

                                                        
31

 DOC I don’t follow how we obtain the cubic roots from the quadratic. 
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Where 
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( 176 ) 

 

E.2 Interpreting Real and Complex Roots 
 
Where there are 3 real roots, the minimum z1 is the liquid compressibility, and the maximum z3 is the vapour compressibility.  
This applies in both property systems.  However, the more difficult case is where there is a single real root. 
 
Physically, such a solution will typically occur at conditions where either vapour or liquid phase does not exist.  In the new 
property system (and the MC extension in the old property system) the approach is to use the single real root regardless 
of whether a liquid or vapour property is requested.  Thus the ‘wrong’ compressibility might be used for the requested 
property, but in general clients of the property system models should check whether calls are appropriate (e.g. for 
supercritical conditions). 
 
The old property system takes a different approach32.  The real parts of the complex roots are used, giving 3 roots, 2 of 
which are equal: 

 

)(5.023

1

BAyy
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( 177 ) 

 
To match the roots to a particular phase, they are sorted into ascending order in ZCUBIC so that y1 is liquid and y3 vapour.  
From above: 
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( 178 ) 

 
 

When these are transformed back to z, and assuming SRK where b = -1: 
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( 179 ) 

This will only be positive where z1 < 1/3, which is a very small region in the vicinity of the critical point. However, when this 
occurs the sorting of the roots into ascending order will result in the imaginary root becoming the vapour root.  At all other 
times in the supercritical region the imaginary root would be returned as the liquid root – which was irrelevant to the old 
property system because it did not use cubic equations of state for the liquid properties.  However, the new property 
system can use equation of state methods for the liquid properties, and this situation would be unacceptable because, 
instead of converging at the critical point the two compressibilities would cross-over. 

E.3 Implication for Property Calculations 
 

                                                        
32

 VI4291. 
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This difference in approach is the basis of the difference in many properties (particularly saturation or dependent properties 
calculated for mixtures) between the two systems33.  In part, this is a consequence of attempting to derive ‘saturated’ 
properties for a material. 
 
Saturation pressure is taken as the ideal bubble point [sum of xiPsat(T)] of the material.  Now, for a pure component this is 
OK because the bubble point is the same as the dew point, and the ideal bubble point should be close to that which SRK 
would give. But for a mixture, the bubble point pressure can be very much greater than the dew point pressure, and 
therefore frequently puts the SRK equation into a region where there is no vapour root.  The old property system will 
estimate this root by using a complex vapour root; the new system will return the only real, liquid, root. 
 
So which approach is better? The answer is neither:  the old property system returns values that have no physical 
significance. The new property system returns values that do have a physical significance, but the wrong one for the 
requested property.  But this is in part caused by the calculating these properties at the bubble point pressure, which for 
mixtures can be so far removed from the real region in which vapour exists that there is no valid way of calculating vapour 
properties at all. 
 
Consider liquid enthalpy.  In the old property system the main equations used in calculating this property are: 
 

 
 )()( iPixP satbut  

( 180 ) 
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( 181 ) 
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( 183 ) 

The main reason that this gives problems (especially for mixtures) is that the use of Pbub the calculation of HV[T,Pbub] in 
( 181 ) and in the calculation of VV[T,Psat] in ( 182 ) can push the equation of state into a region where there is a single 
root which actually belongs to the liquid phase. This is because for a wide boiling mixture the bubble point pressure is very 
much greater than the dew point pressure which physically is the highest pressure at which vapour can exist. 
 
This error34 probably came about because the bubble point pressure is used in the flash algorithm as the equivalent of 
the boiling pressure for a pure component, and the need was to calculate the thermodynamic properties at this pressure 
for both the liquid and vapour phases. However, it means that for mixtures containing light gases (e.g. Nitrogen, Hydrogen), 
the pressure used may be very high resulting in failures in the calculation routines. 
 
One alternative approach for improving these methods for mixtures would be to use the ideal dew point rather than bubble 
point, where vapour roots would be more likely to exist: 
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( 184 ) 

For pure components Pbub = Pdew = Psat and results should be equal.  For multicomponents results would be different, but 
as the current approach is wrongly implemented (specifically the calculation of dPsat/dT in ∆Hvap – see that property) and 
should be fixed, this need not be a major impediment. 
 
In any case, saturated properties should never be used in new development.  Any “client” application should instead make 
the standard property call with both T and P specified.  This still leaves properties such as liquid enthalpy where these 
properties are used directly.  In this case, eventually the preferred ‘template’ set of property methods should be used, 
where properties such as these are derived from the equation of state. 
 

E.4 Solution of Soave-Redlich-Kwong Equation 

 
The Soave-Redlich-Kwong equation can be expressed as function f(Z) of the compressibility Z as follows: 
 

 
DCZZZf  23

 
( 185 ) 

                                                        
33

 ERROR.  This is a complex issue, and is documented in more detail in VI6412. 
34

 VI6414 
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  BPBPPAC  12   
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T

b
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( 187 ) 

 
CZZf  23 2

 
( 188 ) 

 26  Zf  ( 189 ) 

 
See Section 3 for a full description of the equation of state and its constants. 
Note: 
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Properties of the function 
 
f(0) = -D < 0. 
f"(1/3) = 0 and f" is linear (f"' = 6). 
f'(1/3) = C - 1/3 and f' is a set of parabolas, as shown in  
Figure 4. 
 

 
 

Figure 4: Derivative f'(Z) to cubic equation f(Z) for Soave-Redlich-Kwong 
 
The form of f  for a range of values of C are shown in Figure 5. 
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Figure 5a 

 
 

Figure 5b 
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Figure 5c 
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Figure 5d 
 

Figure 5: Cubic equation f(Z) for Soave-Redlich-Kwong 
 
An iteration is performed to obtain the positive value (or values) of z such that f(z) = 0. The iteration is performed using 
Newton’s method, with the stages given below. 

Z

0

-0.01

f

1/3

0.01

C=0.1685

Tr=1

Pr=0.5

C=1/3

Tr=1

Pr=1

C=0.3163

Tr=0.8

Pr=0.5

C=0.2535

Tr=0.8

Pr=0.4

2/3



 

Theory | Property System |  Page 81 

  

Determine if 3 or 1 Real Roots Exist 
 
For 3 real positive roots to exist it is necessary, but not sufficient, that f(z) reaches a maximum and a minimum for z > 0. 
 
Setting f '=0 and solving for Zmax and Zmin gives: 
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CZ

3
1

9
1

3
1
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3
1

9
1

3
1

min




 

 
Thus C must be ≤ 1/3 for Zmin and Zmax to have real values and C must be positive for the maximum value to occur at a 
positive value of Z (because f(0)= - D and D>0). 

• c > 1/3 
Neither Zmax or Zmin exist and only 1 real root exists. 

• c ≤ 0 
Zmin exists but Zmax > 0 does not so three real positive roots do not exist. 

• 0 < c ≤1/3 
3 real positive roots may exist. 
 

Three positive unequal roots exist if: 
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Otherwise only 1 real root exists. 
 

To Find the Vapour Root 
 
Three Positive Roots Exist 
 
The program uses Newton’s method starting with a large value for Z, e.g. Zo=1.5. The program requires any value for Z 
used in the iteration to satisfy f '(Z)> 0 to prevent locating the spurious middle root. 

One Positive Root Exists 
 
The program uses Newton’s method to locate the root. 
 
If b1 > 0, let Z0 = ZLB = BP. 
If b1 < 0, let Z0 = 3.0 
f '(Z)> 0 is required. 
If Zmin does not exist (a ≥ 0) accept the root found as a vapour root. 
If Zmin exists (a < 0) compare the root found to Zmin. If Z ≥ Zmin accept the root as a proper vapour root. If Z < Zmin reject 
the root found and set Z = Zmin. 
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To find the Liquid Root 
 
Three Positive Roots Exist 
 
The program uses Newton’s method starting with a large value for Z, e.g. Zo=1.5. The program requires any value for Z 
used in the iteration to satisfy f '(Z)> 0 to prevent locating the spurious middle root. 

One Positive Root Exists 
 
The program uses Newton’s method to locate the root. 
 
If b1 > 0, let Z0 = ZLB = BP. 
If b1 < 0, let Z0 = 3.0 
f '(Z)> 0 is required. 
If Zmax exists (C > 0) compare the root found to Zmax. If Z ≤ Zmax accept the root as a proper liquid root. If Z > Zmax reject 
the root found and set Z = Zmax. 
 

Selection of the Lower Bound (ZLB) 
 
f(0) = -D which is negative so ZLB = 0 is a lower bound. However, subsequent calculations require evaluation of ln(Z-BP) 
so if BP is a greater lower bound, ZLB = BP would be preferable. 
 
Evaluating f(Z) on the interval 0 < Z ≤ BP. 
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  100 so  xBPx f  

 
Therefore BP can be used for ZLB. 
 

Selection of Starting Point for Newton Iteration 

• f″ < 0 in vicinity of root, ZROOT 
Start Zo on the side of ZROOT where f and f′ have opposite sign. 

• f″ > 0 in vicinity of root, zROOT 
Start Z0 on the side of ZROOT where f and f′ have the same sign. 

 
If the signs of f′ and f″ do not change on the interval Z0-ZROOT the procedure will converge, unless  
| f′| becomes too small. 
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E.5  Solution of Peng-Robinson Equation 

 
The Peng-Robinson equation can be expressed in terms of the compressibility Z as follows: 
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 bZf 26   ( 194 ) 

 6f  ( 195 ) 

 
See Section 3 for a full description of the equation of state and its constants. 
 
Note: 
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This is a cubic equation similar to the Soave-Redlich-Kwong equation but slightly more complicated. 

 
Properties of the function 
 
The inflection point is at f″(Zin) = 0, where Zin = b/3. 
For a maximum and minimum to exist for positive values of Z, set f′ = 0 solve for Zm: 
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Thus for 3 positive real roots to exist, C must be in the range 0 < C ≤ b2/3. 
 

Selection of the Lower Bound (ZLB) 
 
f(0) = -D which is negative so ZLB = 0 is a lower bound. However, subsequent calculations require evaluation of ln(Z-BP) 
so if BP is a greater lower bound, ZLB = BP would be preferable. 
 
Evaluating f(Z) on the interval 0 < Z ≤ BP. 
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 BPBP
BP

D
PA  12  

     
     D xBPxx BPxxx

D xBPBPDBPBP xBPxBPxf





12

2

22323

3232233

 

  100 if 0 Thus  xDBPxf  

 BPBPPAD  1   0For  2
 

 
Substituting for A2B and BP gives:  
 

RR P.Tα. 077808775   

 
This restriction must apply or a root exists in the range 0 < Z ≤ BP. 
 

Iterative Procedure to Find the Roots 
 
Determine if Three or One Real Roots Exist 
 
Three real positive roots may exist if 0 < C ≤ b2/3. 
Three positive unequal roots do exist if: 
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Otherwise only 1 real root exists. 
 
To Find the Vapour Root 
 
The procedure is the same as for the Soave-Redlich-Kwong equation, described in Section A.2.2. 
 
To Find the Liquid Root 
 
The procedure is the same as for the Soave-Redlich-Kwong equation, described in Section A.2.3. 
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Appendix F. Water as a separate phase (not yet made available via XPRP) 

F.1  Derivation of properties 

 
The multi-phase equilibrium algorithms that can treat the water liquid phase in a rigorous way are relatively rare and it is 
beyond the scope of this model to perform multi-phase equilibrium calculations involving more than two phases. A simple 
way to model the water liquid phase is to treat water in hydrocarbon processes as a “separated” component, and this is 
provided as an option in this model. 
 
NB: For PHAST / SAFETI 6.5 there is no such option for the special handling of water in the new property system.  This 
option did apparently exist in the MC extension to the old property system, and the theory is retained here for potential 
future inclusion. 

When water is treated as a “separated” component, it is assumed throughout that liquid water and the other liquid 
components (typically hydrocarbons) are insoluble. The properties of water are obtained using the ASME (1967) 
correlations; the properties of the mixture are calculated as described in Section 3.4, but with the water removed from 
both the vapour mixture and the liquid mixture. The water properties are then combined back into the total mixture 
properties, as shown:  
 
Vapour Enthalpy: 
 

 
WvWHCvWv HyHyH ,,)1(   

 

( 196 ) 

where: 
 
yw is the mole fraction of water in the vapour phase 
Hv,HC, Hv,W are the vapour enthalpies of hydrocarbon (i.e. the mixture) and of water. 

Liquid Enthalpy: 

 
 

WLWHCLWL HyHxH ,,)1(   
 

( 197 ) 

where: 
 
xw is the mole fraction of water in the liquid phase 
HL,HC, HL,W are the liquid enthalpies of hydrocarbon (i.e. the mixture) and of water. 
 
Vapour Entropy: 
 

 ))ln(())1ln()(1( ,, WWvWWHCvWv yRsyyRsys   
( 198 ) 

 
where: 
 
sv,HC, sv,W are the vapour entropies of hydrocarbon (i.e. the mixture) and of water. 
 
Liquid Entropy: 
 

 
WLWHCLWL sxsxs ,,)1(   

( 199 ) 

 
where: 
 
sL,HC, sL,W are the liquid entropies of hydrocarbon (i.e. the mixture) and of water. 

 
Vapour Density: 
 



v

v
V

1
  

( 200 ) 



 

Theory | Property System |  Page 86 

  

 

Wv

W

HCv

W
v

yy
V

,,

)1(





  

 

( 201 )

v,HC, v,W are the vapour densities of hydrocarbon (i.e. the mixture) and of water. 
 
Liquid Density: 
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( 203 )

L,HC, L,W are the liquid densities of hydrocarbon (i.e. the mixture) and of water. 
 
ASME Correlations for water properties 
 
The new multi-compound property system also includes water properties obtained by means of AMSE steam tables. The 
properties are documented in detail by pages 13-48 in the ASME Steam Tables, and the reader is referred to any further 
details to this document.35 
 

F.2  Modelling phase equilibrium 

 
The multi-phase equilibrium algorithms that can treat the water liquid phase in a rigorous way are relatively rare and it is 
beyond the scope of this model to perform multi-phase equilibrium calculations involving more than two phases. A simple 
way to model the water liquid phase is to treat water in hydrocarbon processes as a “separated” component, and this is 
provided as an option in this model. 
 
The following assumptions are made when the separated water option is chosen: 

1. Liquid water and liquid hydrocarbon form two immiscible phases. 

2. Water in the vapour phase follows the Lewis and Randall Rule. 

3. The effect of pressure on the pure component vapour and liquid fugacities of water cancels in the calculation of the 
water K-value. Then the partial pressure of water equals its vapour pressure. 

 
The K-values that apply to the overall vapour and liquid phases containing water are obtained as follows: 

1. Calculate the compositions of the vapour and liquid phases on a water-free basis. 

2. Calculate the K-values KHC,i for all components except water at total system pressure and temperature and using 
the water free compositions. 

3. Calculate the vapour pressure of water. 

4. Obtain the K-values to be used with the original total mole fractions: 
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where i is any component except water 
 

                                                        
35

 DOC. These methods have been incorporated in the new property system by transferring routines from the old property system, but it would be very difficult to 

“reverse engineer” the code into a theory document. 
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Appendix G. Details of solution method (isothermal or constant vapour fraction flash) 

 

This vapour-liquid equilibrium calculation is used when P& or T& or P&T are known. The algorithm finds the third 

unknown parameter (T, P or ) and the equilibrium compositions. 
 
After solving the equations and determining equilibrium flash conditions, the program calculates H, s, M and ρ (density) 
for each phase and for the total fluid. 
 
The symbols used are described at the end of the appendix. 

G.1 Flash Equations 

 
The main phase equilibrium equation is given as Equation ( 151 ) and the material balance equations are given as 
Equations ( 152 ) to ( 155 ). 
 
From these equations, Di is defined as: 
 

 }1{1 , NC i Ψ       K Ψ D ii   
( 206 ) 

 
and the liquid fractions {xi} and vapour fractions {yi} can be calculated from the equations: 
 

 }1{ , NC i               / Di      z x ii   

 

( 207 ) 

 }1{ , NC i                     x K y iii   
( 208 ) 

 

P& are specified and T is sought 
 
The program sets:  
 

 
sati

*

ii PKK ,  
( 209 ) 

 
where: 
 

  x y,T, P,   K K *

i

*

i   

 

 

When Ki
* is held fixed, then: 

 
 









































dT

Pd
 K

dT

dP

P

K
  

dT

dP
 K 

T

K
 

sati

i

sati

sati

isati*

i

P,ΨK

i

*
i

,,

,

, ln
 

( 210 ) 

 

T& are specified and P is sought 
 
The program sets: 
 

 

P

K
K

*

i

i   

 

( 211 ) 

 
 
 
 
Then: 
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P

K
   

P

K
 

P

K
 i

*

i

T,ΨK

i

*
i



























2

 
( 212 ) 

 

P&T are specified and  is sought 
 
The program sets: 
 

 *

ii KK   

 

( 213 ) 

Then: 
 

 

0  
Ψ

K
 

P,TK

i

*
i













 

( 214 ) 

G.2 Outer Loop Iterative Procedure For {K i *} 

1. We get an initial estimate the K-values from the Raoult law: 
2.  

 

P

P
K

sati

i

,

0,   

 

( 215 ) 

then: 

ioK * = 1/P  if T is sought 

ioK * = Pi,sat if P is sought 

ioK * = ioK  if  is sought 

3. We converge the inner loop (described in Sections G.3, G.4, G.5) to get value of T, P or   resulting from { iK *} m  

If Ψ was set to 0 or to 1 in step 2 we recalculate ii xy & . 

3. We calculate: 

4.  

 
1

*

miK  = ),,,(*

mxy mmmi PTK  

 

5. We iterate steps 2 & 3 until convergence. 
 
Convergence tests: 
 

[  ii Ψ)x(Ψy 1 z i ]m iTOLC  NCi ,1  

 
where  
 

iTOLC  = Max(0.0001 z i , 10-9) 

and 1 mm TT  0.005 

or 1 - mm PP /1  0.0001 

or 1 mm ΨΨ  0.00002 

and  mG  0.0001 [using { iK *} 1m ] 
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mG  is not tested if m  has not been set to 0 or 1. 

G.3 Inner loop iteration when P& are specified and T is sought 
 
A variable transformation is used to improve the convergence characteristics of the algorithm. If u is set to 1/T: 
 

T
 u 

1
  

 
Then the following equations can be derived: 
 

 f(u) 
x

y

  G 

i

i

i

i















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



ln  
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











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

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


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







2

i
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i

i

i

i

i

i

i

i

i

i

x

dT
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 y -  

dT
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y

x

  
dT

dG
 

 dT
  T

 -du 
2

1
  

 











dT

dG
 - T 

du

dG 2
 

 





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i
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*
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T
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T

y





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

















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


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






 

 

,P,ΨK

i
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,P,ΨK

i

i
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*
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*
i

*
i

T

K
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T

D

D
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T

x

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
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
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




2

 

 




















dT

 pd

D

y
 -  Ψ 

dT

 pd
 

D

Kx
 - Ψ                   

s

i

i

i

s

i

i

ii lnln
 

 




































i

i

ii

s

i

,P,ΨK

i

D

Ψy
 - x   K

dT

 pd
   

T

y

*
i

ln
 

 



 

Theory | Property System |  Page 90 

  

   x-Ψ  (  
D

K
  

dT

 pd
                    i

i

i

s

i )1
ln









  

 

)  (Ψ
dT
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i

i

i 1
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ln12  

 
G' < 0 for all T between the upper and lower bound: TLB ≤ T ≤ TUB. Therefore G is monotonic. 
Then u can be determined by a Newton-Raphson iteration: 
 

un+1 = un – Gn / G'n 

 
One bound can then be set:  
 

If Gn > 0, TLB = Tn , 
If Gn < 0, TUB = Tn 

 

The temperature Tn+1 = 
1nu1 

 is constrained within the bounds: 

 
TLB < Tn+1 < TUB 

 
 
 
Convergence of the inner loop is assumed when:  
 

nn  - TT 1  < 0.001 

 
 
Then the outer loop temperature is set to the converged inner loop temperature: 
 

Tm= Tn 
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G.4 Inner Loop Iteration when T& are specified and P is sought 
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So G  < 0 for all P > 0 and G decreases monotonically for all positive P as long as: 

 

  Ψ   and   K *

i 100  . 

 
Then P can be determined by a Newton-Raphson iteration: 
 

nnnn G/ - G P P 1  

 
One bound can be set depending on the sign of Gn: 
 

   P         P  G

  P         P  G

nUBn

nLBn





0

0
 

 
The pressure Pn+1 is constrained so that: PLB < Pn+1 < PU 

 
Convergence is assumed when: 
 

000101 1 .    / P - P nn   

 
Then the outer loop pressure can be set to the inner loop pressure: 

Pm = Pn 
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G.5 Inner loop iteration when P & T are specified and  is sought 
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G has NC infinite discontinuities in -  <  <  that occur where the Di = 0 (all 0  zi  1). 
 

Di∞ = (Ki – 1) i∞ + 1 = 0 
 

i∞ =  
1

1
  

 K
- 

i












 

 
A sketch of the Di for a 4-component case having 2 Ki < 1 and 2 Ki > 1 is shown in Figure 6 and  
 

Figure 6: Representation of the function Di 

Representation of the function Di = (Ki-1)i +1 for 4 values of Ki : 

K1=5  1 = -0.25, K2=2  2 = -1, K3 = 2.5  3 = 2.5, K4 = 0.2  4 = 1.25 
 
 
 

Figure 7. 
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Figure 7: Illustration of G as a function of the vapour fraction  

 

The function G is seen to have NC-1 roots. Each root lies between a pair of the i
Ψ

. Since we restrict X i and zi to be 

X i 0 and z i 0 then we require D i > 0. 
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Thus, mathematically, we desire to find the root that lies in the interval bounded by: 

LBΨ  = Max iΨ  where iΨ < 0 and 

UBΨ  = Min iΨ  where iΨ > 1 and 

LBΨ < Ψ < UBΨ  

 

This keeps all D i > 0 

It should be noticed that no iΨ  can lie in the range 0  iΨ   1  

This is because we require all K-values to be positive: K i  > 0. 

In order to have iΨ > 0 it is required that: K i  > 1  

If iΨ > 1 then it is required that: K i < 1 

Thus if there is not even one K-value so that K i  > 1 or if there is not even one K-value so that: K i < 1, then the desired 

interval containing the root sought does not exist. In this case Ψ is directly set to 0 if all K i < 1 or Ψ is set to 1 if all K

i  > 1. 

If there is at least one K-value so that K i  > 1 and one K-value so that K i < 1 we obtain: 

 

LBΨ  = - 
1

1

iMaxK
 

UBΨ  = -
1

1

iMinK
 

 

Then  can be determined by a Newton-Raphson iteration: 
 

1nΨ = n  - Gn/ nG  

 
One bound may be tightened (because G is monotonic): 
 

if G
n

 > 0 
LB  = n  

if G
n

 < 0 UB  = n  

 

The vapour fraction 1n is constrained so that: 

 

LB  < 1n  < UB  

 
Convergence is assumed when: 
 

1nΨ  - nΨ   TOL = Max(0.00001 , 0.00001 1nΨ ) 

 
Then we set the outer loop variable: 
 

m = n  
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If nΨ  < 0 we set nΨ  = 0 to get ii xy &  

If nΨ > 1 we set nΨ  = 1 to get ii xy &  

 

(Ψ is physically meaningful when 0 Ψ 1) 
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Appendix H. Details of solution method (isenthalpic, isentropic, or constant energy 
flash) 

 
This vapour-liquid equilibrium calculation is used when the specified set of parameters are P&HT or P&sT or P&ET (where 
the subscript T indicates the total quantity) and the temperature T is unknown. 
 
The main steps in the method are as follows: 

1. Call FLTPVF to calculate the dew point temperature (TDP), as described in Appendix B. 

2. Calculate the dew point enthalpy Hv,DP, entropy sv,DP , or energy Ev,DP. 

3. If HT > Hv,DP (or the equivalent for entropy or energy) call FLTFND as described in Section H.2 to calculate T of 
superheated vapour. Go to Step 8. 

4. Call FLTPVF to calculate bubble point T (TBP), as described in Appendix B. 

5. Calculate bubble point enthalpy Hv,BP, entropy sv,BP , or energy Ev,BP. 

6. If HT < Hv,BP (or the equivalent for entropy or energy) call FLTFND as described in H.2 to calculate T of subcooled 
liquid. Go to Step 8. 

7. If Hv,BP <HT < Hv,DP (or the equivalent for entropy or energy) call FLHSP as described in Section H.1 to calculate T& 
of the vapour-liquid mixture. 

8. Calculate h, s, p, M for each phase and total fluid. 
 
The symbols used are described at the end of the appendix. 

H.1 Isenthalpic - Isentropic Flash (FLHSP) 
 
The algorithm matches the specified molar enthalpy (h) or entropy (s) for a two-phase vapour liquid fluid at specified P. A 

bounded secant method is used to iterate on vapour fraction () to locate the root of: 
 

G = h – hSPEC 

 
or 

 
G = s – sSPEC 

 

or 

 

G = E – ESPEC 

 

 

Subroutine FLTPVF is called for each trial value of  to determine T and phase compositions. 

1. The base tolerance for the root of G is: 
TOLo = 0.0004184xM J/gmole, for enthalpy 

 = 0.000004184xM J/gmole/K, for entropy 
 

Bounds: 

UL = 1 

LL = 0 

2. Given o calculate Go 

Convergence is assumed if   0 TOL Go  . 

 

If Go < 0 Iterate k+1 = k + 0.05 incrementally until Gk > 0.0, and then set:  
 

LL = k-1 
 

If Go > 0 Iterate k+1 = k - 0.05 incrementally until Gk < 0.0, and then set: 
 

UL = k-1 
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3. The root is now bracketed between: 

 

LL <  < 1 or 1 <  < UL 

 

where 1 = k from 2. 
 
Further iteration is by secant formula: 
 

1n-n  - Ψ ΨΔΨ   

1n-n  - G GΔG   

 

If on  TOL G and .  ΔΨ  000010 the algorithm has failed. 

 
Otherwise the tolerance is set to: TOLR = MAX (TOLo, TOLn) 
 

Where TOLn = 0.00002 ΔG/ΔΨ   

  

If |Gn|   TOLR and ||<0.0001 convergence is assumed 
 
Otherwise the iteration continues. 
 

If |G/| < 10-8 the algorithm has failed. 
 
Otherwise the secant formula is applied: 
 

 ΔG/ΔΨ/  - G Ψ Ψ nnn 1  

 
One of the bounds is adjusted: 
 

nLLn  Ψ    Ψ  If G  0  

nULn  Ψ    Ψ  G  0 If  

 

n+1 is then bounded: 

 

  2 If 11 / Ψ Ψ        Ψ Ψ Ψ ULnnULn    

  2 If 11 / Ψ Ψ        Ψ Ψ Ψ LLnnLLn    

 
and the iteration continues. 
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H.2 Single Phase Isenthalpic - Isentropic flash (FLTFND) 
 

The algorithm matches specified molar enthalpy (h) or entropy (s) for a single-phase vapour or liquid fluid at specified 
pressure (P). The secant method is used to find the root T of specification function G: 
 

SPEC h - hG   

 
Or 
 

SPEC s - sG    

 

Or 
 

G = E – ESPEC 

 

 
1. The base tolerance for the root of G is:  
 

TOLo = 0.0004184xM J/gmole, for enthalpy 
= 0.000004184xM J/gmole/K, for entropy 

 
2. Given T0 where: 
 

015 .  .     If Ψ   T T DPo   

005 . Ψ .      If  -  T T BPo   

 
 Let: 
 

.51  -  TT o  

.52    T T o   

 
4. Iterate by secant method 
5.  

1k-k  G GΔG   

1k-k  T TΔT   

 050.  ΔT TOL and  GIf k   convergence is assumed 

 001010 8 .  ΔT  and   ΔGIf -   algorithm failure is assumed 

 
The tolerance is reset: 
 

 ko ,TOLTOL Max TOL   

 
Where 
 

ΔG/ΔT .  TOLk 0020  

 ΔG/ΔT/ - G TTOL kkk - 1  

  211 / T T       T T If T ULkkULk    

  2 11 / T T       T T T LLkkLLk    

and the iteration continues. 
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Appendix I. Emulating pseudo-component equilibrium in new property system 

 
This Appendix discussed the method with which the new multi-component property system XPRP (MC) would be able to 
emulate the method of ‘pseudo-component’ equilibrium (PC) applied in the old property system PRP. 
 
There are two fundamental principles that define the PC methodology: 

1. Regardless of phase fractions, the compositions of all phases are identical 

2. The determination of phase fraction is determined by reference to the mixture bubble point using ideal 
thermodynamic methods (i.e. vapour pressure) 

 
In MC methods, when using ideal thermodynamics for both the vapour and liquid phases, the equilibrium compositions 
are defined by: 
 

 sat

iii PxPy   
( 216 ) 

 
Therefore the bubble point pressure is defined by: 
 

 
 sat

iibub PxP  
( 217 ) 

 
These can be reformulated in terms of the familiar K value as: 
 

 
iii xKy   

( 218 ) 

 
Where 
 

 

P

P

x

y
K

sat

i

i

i

i   

( 219 ) 

 
Therefore, if we wanted an MC method that behaved like the PC method we require that 
 

 i) all(for  1iK  
( 220 ) 

 
This can only be achieved if, in calculating the K values, the vapour pressure that is used is the same for all 
components, i.e. 
 

 
i) all(for  *

satsat

i PP   
( 221 ) 

 
If this were the case, then to match the bubble point pressure we require that: 
 

 
   satsat

i

sat

iibub PPxPxP **  
( 222 ) 

 

Such a method could be implemented in the new property system as a liquid phase fugacity option36. The calculation of 
vapour pressure would take the form: 
 
 

  sat

ii

sat PxP*  
( 223 ) 

 
which would then be used as the vapour pressure for every component. 
 
The fact that the K values are now identical for every component means that the flash algorithm behaves very much as if 
the mixture is a pure component: 

1. The vapour and liquid compositions will always be identical. 

                                                        
36

 ERROR.  This has been done, but I think at the moment it doesn’t work.  To test in more detail. 



 

Theory | Property System |  Page 100 

  

2. In a fixed vapour fraction flash, the calculated temperature or pressure will correspond to the ideal bubble point 
of the mixture. 

3. In a fixed temperature and pressure flash, the phase fraction will always be returned as either 0 or 1 depending 
on whether the K value is less than or greater than 1. 

 
This seems to satisfy the requirements of the current PC approach, but is implemented solely by configuration of the 
fugacity method on the stream type. Furthermore, calculated properties can be retrieved in a consistent manner 
irrespective of the PC/MC setting. 
 
All the usual flash types should work correctly. For example, for an isenthalpic flash, while iterating for a solution on vapour 
fraction, the vapour and liquid compositions will be the same. However, the vapour enthalpy will still be calculated using 
the vapour enthalpy method and the liquid enthalpy will still be calculated using the liquid enthalpy method. So if these 
are the same as in PC, the same answers will be obtained between PC and MC. 
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Appendix J. Implementation of property calculation in new property system (XPRP) 

 
This appendix contacts logic corresponding to code implementation into new property system XPRP, as far as is 
different as described in the main body of this report.  

J.1  Cubic equations of state 

 
Redlich-Kwong Equation 
 
This is one of the simplest cubic equations of state, and because of its limitations in some areas was modified by Soave 
as shown below. The original Redlich-Kwong equation for component i is: 
 

 

  Tbvv

a

bv

RT
P

i

i

i 



  

 

( 224 ) 

Where 
 
 
 

ci

ci

i
P

TR
a

5.22

4278.0  

 

( 225 ) 

and 

ci

ci

i
P

RT
b 0867.0  

 

( 226 ) 

 
For mixtures, equivalents to a and b must be defined: 
 

 

R

ay
a

ii
  

 

( 227 ) 

 

5.2T

a
A   

 

( 228 ) 

 

RT

by
B

ii
  

 

( 229 ) 

and the compressibility can then be expressed as a cubic: 
 

       01
2223  PBPAPBPBPAZZZ  

 

( 230 ) 

Note that this is an identical equation to that for SRK below, but the definitions of the A and B terms differ. 
 
Also, in this implementation, binary interaction parameters are not used. 
 
Soave-Redlich-Kwong Equation37 
 

 

)( bvv

a

bv

RT
P








 

 

( 231 ) 

 

 
i ic

ic

i

i

i

i
P

T
z

R

b
zb

,

,
08664.0  

( 232 ) 

                                                        
37

 ERROR. The constants currently used in the following equations are not as written, but are those used for the old property system.  This is to minimise differences 

in regression testing between the two systems, and should be reverted once we are satisfied with the new system. VI6407. 
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 

i j

jjiiijji aaczzRa  2
 

 

( 233 ) 

 

ic

ici

i
P

T

R

a
a

,

2

,
42747.0  

 

( 234 ) 

 2

,

, 11





























ic

ii
T

T
f  

 

( 235 ) 

 2

, 15613.055171.148508.0 iiif    

 

( 236 ) 

 )1( ijjiij kcc   

 

( 237 ) 

In the equations above: 
 
zi is the mole fraction of component i in the phase under consideration 
Tc,i is the critical temperature of component i 
Pc,i is the critical pressure of component i 

 is the acentric factor for the material, a constant given by38: 
 

 

1
)7.0(

log 10 






 


c

csat

P

TTP
  

 

( 238 ) 

where Psat(T) is the saturation pressure at the specified temperature (i.e. at 0.7Tc). 
cij, cji  are symmetric binary interaction parameters 
kij  is the binary interaction constant 
The equation can be expressed in terms of the compressibility Z as follows: 
 

       01
2223  PBPAPBPBPAZZZ  

 

( 239 ) 

 

RT

Pv
Z   

 

( 240 ) 

 

2

2

T

a
A


  

 

( 241 ) 

 

T

b
B   

 

( 242 ) 

Peng-Robinson Equation 

                                                        
38

 Although acentric factor can be calculated, for most materials it is provided in the DIPPR database.  It is only calculated in the new system if no value is found. 
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)()( bvbbvv

a

bv

RT
P








 

 

( 243 ) 

 

 
i ic

ic

i

i

i

i
P

T
z

R

b
zb

,

,
07780.0  

 

( 244 ) 

 

ic

ici

i
P

T

R

a
a

,

2

,
45724.0  

 

( 245 ) 

 
 

i j

jjiiijji aaczzRa  2
 

 

( 246 ) 

 2

,

, 11





























ic

ii
T

T
f  

 

( 247 ) 

 2

, 26992.054226.137464.0 iiif    

 

( 248 ) 

 )1( ijjiij kcc   

 

( 249 ) 

The three constants used in Equation ( 248 ) were determined to fit pure component vapour pressures by Peng and 
Robinson. 
 
The equation can be expressed in terms of the compressibility Z as follows: 
 

          01321
2223  PBPBPBPAPBPBPAZPBZZ  

 

( 250 ) 

where all terms are as for Soave-Redlich-Kwong. 
 

J.2  Enthalpy 

 
Redlich-Kwong Equation 
 

 

 Z
Z

PB

B

A

RT

H












11ln5.1

2

 

 

( 251 ) 

Note that the A and B terms are as in the Redlich-Kwong discussion above, not as used by Soave-Redlich-Kwong and 
Peng-Robinson 
 
Soave-Redlich-Kwong Equation 
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 Z

αa

SUM
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A

RT

ΔH




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
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
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









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1ln
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( 252 ) 
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aαzSUM
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
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21
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( 253 ) 

Peng-Robinson Equation 
 

  
 

 Z
PBZ

PBZ

aα

SUM

B

A
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ΔH



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( 254 ) 

 
 

J.3  Entropy 

 
Redlich-Kwong Equation 
 

 

)ln(ln1ln
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Soave-Redlich-Kwong Equation 
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( 256 ) 

 
Peng-Robinson Equation 
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( 257 ) 

J.4  Fugacity coefficient 

 
Redlich-Kwong Equation 
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 TBb   
( 261 ) 
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Soave-Redlich-Kwong Equation 
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Peng-Robinson Equation 
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J.5  Isothermal compressibility 

 

Soave-Redlich-Kwong Equation 
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Peng-Robinson Equation 
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J.6  Coefficient of Thermal Expansion 

 
Soave-Redlich-Kwong Equation 
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Peng-Robinson Equation 
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J.7  Specific heat capacities 
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Soave-Redlich-Kwong Equation 
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Peng-Robinson Equation 
 

  
 

 32
21

21
ln

22

12),(
2

SUMSUM
PBZ

PBZ

B

A

aR

PTCv 




























 

( 283 ) 

 

 



 

Theory | Property System |  Page 109 

  

Appendix K. Implementation of property calculation in old property system (PRP)  

 
This appendix contacts logic corresponding to code implementation into old property system PRP, as far as it is different 
(including notation) as described in the main body of this report. 
 
Cubic equation of state (same as in body of report but using different notation) 
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where a, b, u and w are constants defined below for each of the equations. 
 
This equation can be re-stated as a cubic equation in Z (the compressibility): 
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where: 
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Each of the three cubic equations of state uses different values for the four constants (a, b, u, w), as shown below. 
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Helmholtz energy and entropy 
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NOMENCLATURE AND NOTATION 
 
Definitions and notation: 
 
a parameter of cubic equation of state, Nm4 

A* transformed aα parameter of a cubic equation of state, A* =   aαP / (R2T2) , - 
b parameter of cubic equation of state, m3 

B 2nd Virial Coefficient in virial equation, m3 

B* transformed b-parameter of cubic equation, B = bP / (R2T2), - 

D Intermediate parameter defined by Ψ   K Ψ D ii  1  

Cp ideal gas heat capacity, J/(kmol K) 

f Function of the acentric factor, - 
F  Total feed rate, kmol/s 
G Gibbs free energy or deviation function, specification function 
Hig(T) ideal gas enthalpy at temperature T, J/kmol/K 
Hvap  heat of vaporisation, J/kmol 
H(T,P) enthalpy at temperature T and pressure P, J/kg 
K Phase-equilibrium K-value  
L  Liquid rate leaving, kmol/s 
MW Relative molecular mass, kg/kmol 
N or NC Number of components 
p  Pressure (partial or component), Pa 
P Pressure (total), Pa 
Pc  Critical pressure, Pa 
Psat(T) Saturation pressure at temperature T, Pa 
R Universal gas constant= 8314.4 J/(kmol K) 
S(T,P) entropy (at temperature T and pressure P) 
T  Temperature, K  
Tc  Critical temperature, K 
Tr  Reduced temperature (T/Tc), - 
Tsat(P) saturation temperature at pressure P, K 
TOL Iteration variable tolerance 
U internal energy 
u =1/T 
V molar volume, m3/kmol 
V Vapour rate leaving, kmol/s 
xi  Liquid mole fraction of component i 
xW  Liquid mole fraction of water 
x  Vector of liquid mole fractions  
yi  Vapour mole fraction of component i 
yW  Vapour mole fraction of water 
y  Vector of vapour mole fractions  
zi  Feed mole fraction of component i 
z  Vector of feed stream mole fractions  
Z Compressibility of the material Z = PV/(RT) 
 
 
Greek Symbols 
 
  Temperature dependent parameter of cubic equation of state (-) 

H Molar enthalpy departure function  

S Molar entropy departure function 

̂   Fugacity coefficient of a component in a mixture 

 V/F i.e. the vapour fraction 

  Acentric factor of a material 

{} Vector quantity. The dimension is typically the number of components NC 
 
 
 
Subscripts 
 
BP Bubble point 
C Critical property 
DP Dew point  



 

Theory | Property System |  Page 111 

  

HC Hydrocarbon component (any component except separated water) 
i  Ith component 
ig  Ideal Gas 
L Liquid phase 
LB  Lower Bound  
m  Outer loop iteration counter  
n  Inner loop iteration counter  
o  Initial value 
ref reference state for departure functions (ideal gas at same composition and same P,T) 
REF reference state for zero enthalpy/entropy; TREF = 298.15K, Pref = 1Pa 
sat  Saturated condition 
SPEC Specified parameter 
T At temperature T 
UB  Upper Bound 
v Vapour phase 
W Water 
 
Superscripts 
 
*  Composition dependent value held fixed 
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