

# VALIDATION

# UNIFIED DISPERSION MODEL

DATE: December 2023

This report describes the validation of the UDM in its entirety by comparison with measurements from large-scale field experiments.

Reference to part of this report which may lead to misinterpretation is not permissible.





| No. | Date       | Reason for Issue                         | Prepared by       | Verified by      | Approved by |
|-----|------------|------------------------------------------|-------------------|------------------|-------------|
| 1   | 1999       | PHAST 6.0                                | Holt and Witlox   |                  |             |
| 2   | March 2000 | PHAST 6.1                                | Holt and Witlox   |                  |             |
| 2   | Oct 2005   | SAFETI 6.5                               | Harper            |                  |             |
| 3   | May 2011   | Phast (Risk) 6.7                         | Witlox and Harper |                  |             |
| 4   | Aug 2014   | Phast (Risk) 6.7 – added CO2 experiments | Witlox            |                  |             |
| 5   | April 2015 | Added UDM AWD results                    | Witlox&Fernandez  | Fernandez&Harper |             |
| 6   | Oct 2017   | Phast 8.0                                | Fernandez&Witlox  |                  |             |
| 7   | Dec 2020   | Phast / Safeti 8.4                       | Hart & Harper     |                  |             |
| 8   | May 2021   | Apply new template                       | D. Vatier         |                  |             |
| 9   | Oct 2021   | Phast / Safeti 8.6                       | Hart & Harper     |                  |             |
| 10  | June 2023  | Add COSHER experiments                   | Harper & Hart     |                  |             |

Date: December 2023

#### Prepared by: Digital Solutions at DNV

© DNV AS. All rights reserved

This publication or parts thereof may not be reproduced or transmitted in any form or by any means, including copying or recording, without the prior written consent of DNV AS.



### ABSTRACT

This report describes the validation of the Unified Dispersion Model (UDM).

The UDM theory is described by an accompanying report. The UDM models the dispersion following a ground-level or elevated twophase pressurised release. It effectively consists of the following linked modules: jet dispersion, non-equilibrium droplet evaporation and rainout and touchdown, pool spread and vaporisation, heavy gas dispersion, passive dispersion. The UDM allows for continuous, instantaneous and constant finite-duration releases. The UDM also allows for general time-varying releases. In addition to the nonequilibrium droplet thermodynamics model, UDM also allows for a two-phase HF thermodynamics model (including effects of polymerisation). Another feature of the UDM is possible plume lift-off, where a grounded cloud becomes buoyant and rises into the air. Rising clouds may be constrained to the mixing layer if it is reached.

This report includes a comprehensive description of the overall validation of the UDM model. This includes a description of each validation experiment, the details of the assumptions made for the UDM simulation plus a detailed discussion of the results obtained from a statistical and graphical comparison against the field data.

The UDM verification manual discusses the verification of the individual modules, which includes validation against wind-tunnel experiments. The current document is concerned with the validation of the overall model, which involves validation against the following field experiments:

- Continuous releases: Thorney Island (Freon and Nitrogen), Goldfish (HF), Prairie Grass (passive), Desert Tortoise (Ammonia), FLADIS (Ammonia), EEC (Propane) and Maplin Sands LPG experiments. Various other continuous releases, are included to assess vertical releases into a crosswind: Schatzmann (wind tunnel), Donat (wind tunnel), Vidali (wind tunnel), Li (wind tunnel) and a field experiment by Engie (LNG)
- Instantaneous releases: Thorney Island experiments (Freon and Nitrogen)
- Finite-duration releases: Kit Fox (CO2) and Jack Rabbit II (Chlorine) experiments.
- Buried pipeline ruptures (CO<sub>2</sub>) COSHER experiments
- Continuous and time-varying pressurised CO2 experiments carried out at Spadeadam (BP and Shell data made available via CO2PIPETRANS JIP)
- PHMSA validation set: selection of experiments including
  - Dispersion from time-varying pools: Maplin Sands, Burro and Coyote (all LNG)
  - Continuous releases: Thorney Island (Freon and Nitrogen)
  - Wind-tunnel releases: CHRC-A (CO2), BA-Hamburg, BA-TNO (SF6)

The performance of the UDM in predicting peak centreline concentration and cloud widths is found to be overall very good.



# Table of contents

| ABSTRA                                               | ACT                                                                                                                                                                                                                                                                               | I                                |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 1                                                    | INTRODUCTION                                                                                                                                                                                                                                                                      | 1                                |
| 2                                                    | DESCRIPTION OF THE VALIDATION EXPERIMENTS                                                                                                                                                                                                                                         | 2                                |
| 3                                                    | METHOD FOR UDM SIMULATIONS OF EXPERIMENTS                                                                                                                                                                                                                                         | 5                                |
| 3.1                                                  | Definition of input data to validation runs                                                                                                                                                                                                                                       | 5                                |
| 3.2                                                  | Calculation of output data to validation runs                                                                                                                                                                                                                                     | 6                                |
| 3.3                                                  | Statistical measures of performance                                                                                                                                                                                                                                               | 6                                |
| 4                                                    | RESULTS AND DISCUSSION                                                                                                                                                                                                                                                            | 8                                |
| 4.1<br>4.1.1<br>4.1.2                                | Continuous releases (excluding CO <sub>2</sub> )<br>Discharge data for two-phase jets<br>Dispersion                                                                                                                                                                               | 8<br>8<br>12                     |
| 4.2                                                  | Continuous releases (angled & vertical)                                                                                                                                                                                                                                           | 15                               |
| 4.3                                                  | Instantaneous dispersion                                                                                                                                                                                                                                                          | 19                               |
| 4.4<br>4.4.1<br>4.4.1.1<br>4.4.1.2<br>4.4.2<br>4.4.3 | Pressurised CO2 releases (BP and Shell experiments)<br>Phast discharge model predictions<br>Time-varying releases<br>Initial rate for steady-state and time-varying releases<br>UDM dispersion predictions<br>Comparison statistics between predicted and observed concentrations | 20<br>20<br>20<br>23<br>24<br>29 |
| 4.5<br>4.5.1<br>4.5.2<br>4.5.3<br>4.5.4              | Buried pipeline / Crater Releases (COSHER)<br>Facility and measurement grid<br>Crater modelling<br>Concentration measurements<br>Dispersion Results                                                                                                                               | 30<br>30<br>33<br>33<br>34       |
| 4.6<br>4.6.1<br>4.6.2                                | Finite-duration dispersion<br>Kit Fox experiments<br>Jack Rabbit II experiments                                                                                                                                                                                                   | 36<br>36<br>39                   |
| 4.7<br>4.7.1<br>4.7.2<br>4.7.3                       | PHMSA Validation<br>Selection of experiments<br>Analysis & Discussion<br>Summary                                                                                                                                                                                                  | 42<br>42<br>43<br>47             |
| 4.8                                                  | Conclusions and summary overall UDM statistics for all experiments                                                                                                                                                                                                                | 48                               |
| APPENE<br>Appendi                                    |                                                                                                                                                                                                                                                                                   | 52<br>52                         |
| A.1<br>A.2<br>A.3<br>A.4<br>A.5                      | Continuous (excluding CO <sub>2</sub> )<br>Instantaneous<br>Pressurised CO <sub>2</sub> releases (BP and Shell experiments)<br>Finite-duration dispersion (Kit Fox experiments)<br>PHMSA Validation Cases                                                                         | 52<br>59<br>60<br>65<br>70       |
| Appendi<br>Appendi                                   | x B. Definition of cloud width                                                                                                                                                                                                                                                    | 76<br>79                         |
| NOMEN                                                | CLATURE                                                                                                                                                                                                                                                                           | 83                               |
| REFERE                                               | ENCES                                                                                                                                                                                                                                                                             |                                  |



# Table of figures

| Figure 1: Concentration reporting in crosswind experiments (from Schatzmann et al)                        | 15 |
|-----------------------------------------------------------------------------------------------------------|----|
| Figure 2: MG and VG plots for the plume centreline concentration                                          |    |
| Figure 3: MG and VG plots for the plume centreline concentration (8.6 vs 8.4)                             | 18 |
| Figure 4. Discharge modelling (DISC/TVDI) and dispersion modelling (UDM)                                  | 20 |
| Figure 5. TVDI validation of flow rate for time-varying CO2 releases (BP&Shell tests)                     | 22 |
| Figure 6. Field detector array for concentration measurements (Shell CO2 tests)                           | 25 |
| Figure 7. BP Test 11 – UDM validation for maximum contraction versus distance                             |    |
| Figure 8. BP Test 9 – UDM validation for maximum concentration versus distance                            | 26 |
| Figure 9. Shell Test 11 – UDM validation for maximum contraction versus distance                          | 27 |
| Figure 10. Shell Test 16 – UDM validation for maximum concentration versus distance                       |    |
| Figure 11. Shell Test 1 – UDM validation for maximum concentration versus distance                        | 28 |
| Figure 12. UDM values of MG and VG for BP and Shell CO2 experiments                                       |    |
| Figure 13: The experimental facility                                                                      | 31 |
| Figure 14. Instrumentation locations                                                                      |    |
| Figure 15. Maximum arcwise concentration for COSHER experiments                                           |    |
| Figure 16. Maximum pointwise concentration for COSHER experiments                                         |    |
| Figure 17. Plot plan of the Kit Fox site                                                                  | 36 |
| Figure 18. UDM validation statistics for Kit Fox URA experiment                                           |    |
| Figure 19: MG and VG values plot the plume centreline concentration (without GSC included for comparison) |    |
| Figure 20: Concentration vs Distance for Trail 1, with and without GSC                                    |    |
| Figure 21: Pointwise MG VG Plot for PHMSA individual experiments (Phast 8.6)                              |    |
| Figure 22: Pointwise MG VG Plot for PHMSA grouped experiments (Phast 8.6)                                 |    |
| Figure 23: Arcwise MG VG Plot for PHMSA individual experiments (Phast 8.6)                                |    |
| Figure 24: Arcwise MG VG Plot for PHMSA grouped experiments (Phast 8.6)                                   |    |
| Figure 25. Summary MG and VG values for arcwise maximum concentration                                     |    |
| Figure 26: Thorney Island Source for continuous release experiments.                                      |    |
| Figure 27. Comparison of cloud widths                                                                     | 78 |
|                                                                                                           |    |

# List of Tables

| Table 1. List of experiments for UDM validation                                                                  | 4     |
|------------------------------------------------------------------------------------------------------------------|-------|
| Table 2. DISC input spreadsheet for large-scale flashing experiments (FLADIS, EEC, DT, GF) – metastable liquid   |       |
| assumption                                                                                                       | 10    |
| Table 3. Large-scale flashing experiments: flow rate predictions, SMEDIS versus Phast 7.1 post-expansion predict | tions |
|                                                                                                                  | 11    |
| Table 4: MG and VG values for centre-line concentrations and widths (continuous)                                 | 13    |
| Table 5. Phast input data for the crosswind calculations (Schatzmann, Donat, Vidali and Engie)                   | 16    |
| Table 6. MG and VG values for the maximum plume centreline concentration                                         |       |
| Table 7. MG and VG values for centre-line concentrations (instantaneous)                                         | 19    |
| Table 8. Predicted versus observed initial CO <sub>2</sub> density for time-varying Shell tests                  | 21    |
| Table 9. Predicted versus observed flow rates; UDM source-term data (BP CO <sub>2</sub> tests)                   | 23    |
| Table 10. Predicted versus observed flow rates – vary Phast assumptions (Shell tests)                            | 24    |
| Table 11. Predicted versus observed flow rates and UDM source-term data (Shell tests)                            |       |
| Table 12. UDM values of MG and VG for BP and Shell $CO_2$ experiments                                            | 29    |
| Table 13. The COSHER test rig                                                                                    |       |
| Table 14. The COSHER test conditions                                                                             |       |
| Table 15. Baseline Phast source term from matching release rates                                                 |       |
| Table 16. Maximum observed and predicted crater dimensions                                                       |       |
| Table 17. Arwise and pointwise MG/VG values for COSHER CO2 simulations                                           |       |
| Table 18. List of URA Kit Fox experiments for UDM validation                                                     |       |
| Table 19: UDM values of MG and VG for KitFox URA experiments                                                     |       |
| Table 20: General information provided to modellers for Jack Rabbit II                                           | 39    |
| Table 21: Detailed release data for Jack Rabbit II                                                               |       |
| Table 22: Simplified release data used in Phast model                                                            |       |
| Table 23: MG and VG values for the plume centreline concentration and width to 20 ppm                            |       |
| Table 24: List of experiments for PHMSA UDM validation                                                           |       |
| Table 25: Point-wise MG and VG results                                                                           | -     |
| Table 26: Arc-wise MG and VG results                                                                             |       |
| Table 27: Summary MG and VG values from Phast 8.6 for concentration for all experimental data sets               |       |
| Table 26. UDM input data for Thorney Island experiments (continuous)                                             | 57    |



| Table 27. | Experimental conditions for BP CO <sub>2</sub> tests                     | 60 |
|-----------|--------------------------------------------------------------------------|----|
| Table 28. | Experimental conditions for Shell CO <sub>2</sub> tests                  | 60 |
| Table 29. | MDA data for BP DF1 CO2 experiments (input and measured data)            | 62 |
| Table 30. | MDA data for Shell CO <sub>2</sub> experiments (input and measured data) | 64 |
| Table 31: | UDM Input Data for all PHMSA LNG experiments                             | 71 |
|           | UDM input data for Thorney Island (continuous) experiments               |    |
|           | UDM input data for wind tunnel experiments                               |    |
|           | Chronological performance for MG/VG values                               |    |
|           | Chronological list (starting at v8.4) for the PHMSA validation set       |    |
|           |                                                                          | -  |



### **1 INTRODUCTION**

A full description of the theory underlying the UDM is described in the accompanying UDM theory manual. The UDM verification manual describes the verification of the individual modules, which were mainly carried out against *wind-tunnel* data. This report is concerned with the validation of the UDM in its entirety. To this end UDM predictions are compared with measurements from a selection of the available experimental *field* data. The basis and choice of these experiments stem from the model evaluation carried out by Hanna et al<sup>10</sup>, the EU SMEDIS<sup>1</sup> programme (**S**cientific **M**odel Evaluation of **D**ense gas dispersion models), and the UDM validation against the experiments in the US PHMSA LNG Model Validation database<sup>2,3,4</sup>. In addition more recent experiments have been added relating to both unpressurised and pressurised CO<sub>2</sub> releases, as well as for the PHMSA process for approving models for use with LNG in the US.

Chapters 2 and 3 provide full description of the validation sets and details of the methods used within the model to simulate the experimental conditions.

Chapter 4 presents and discusses results from the comparison of the UDM predictions with the measured experimental data.

All experimental simulations in this report can be supplied to licensed users as Phast .psux files.



### **2 DESCRIPTION OF THE VALIDATION EXPERIMENTS**

The validation set consists of 13 sets of field scale experiments and 3 sets of wind tunnel experiments, covering a wide range of release scenarios. This includes continuous, instantaneous, finite-duration and time-varying releases, unpressurised and pressurised releases, and vapour and two-phase releases. A summary of each is provided in Table 1 whilst a more detailed, qualitative description of each experiment is presented below:

- Continuous releases (see Section 4.1; excluding CO<sub>2</sub> releases)
  - Prairie Grass A small quantity of Sulphur dioxide was released at or near ground level over flat terrain. Experiments were carried out during both daylight and non-daylight hours giving rise to a wide range of atmospheric stabilities. Concentrations were measured from an array of sensors located on an arc at downwind distances of 50, 100, 200 400 and 800m.
  - Desert Tortoise Liquefied ammonia was released under pressure in the downwind direction through a pipe which was situated approximately 1 m above the ground. At the exit of the pipe, the ammonia flashed to form a two-phase aerosol, a small quantity of which rained out downwind of the release. Concentration measurements were made from an array of sensors located on an arc at downwind distances of 100 and 800m.
  - *EEC* In this experiment pressurised liquid propane was released approximately 0.5 m above the ground to form a two-phase aerosol. Concentrations were measured up to a maximum distance of 64m.
  - FLADIS The experiment was designed to investigate the downwind dispersion of an ammonia aerosol. Liquefied ammonia was released under pressure through a nozzle situated at a height of 1.5m. These experiments differed from the Desert Tortoise experiments because the release rates were much lower, allowing for the investigation of far field passive effects. In addition, no liquid pool was observed as in the case of the Desert Tortoise experiments.<sup>5</sup>
  - Goldfish In a similar manner to the Desert Tortoise experiments, pressurised hydrogen fluoride was
    released from an elevated pipe, forming a two-phase aerosol. No rainout of the HF was observed.
    Concentration measurements were made from an array of sensors located on an arc at downwind
    distances of 300, 1000 and 3000m.
  - Maplin Sands LPG These experiments are similar in nature to the LNG dispersion case in the PHMSA set. LPG was spilled onto water and the continuous dispersion of the vapourising pool was monitored at various arc distances up to 650m downwind.
- Continuous releases (vertical/angled into a crosswind)
  - Schatzmann 4 continuous elevated vertical releases of heavy gases (Wind tunnel)
  - Donat 9 continuous elevated vertical, angled and horizontal releases of heavy gases (Wind tunnel)
  - *Vidali* 1 continuous vertical CO2 release (Wind tunnel)
  - Engie 3 continuous LNG vapour releases: 2 vertical, 1 horizontal
- Thorney Island Instantaneous (see Section 4.2)
   In this experiment, approximately 2000m<sup>3</sup> of an unpressurised mixture of Freon and Nitrogen was released at ground level. Concentrations were measured up to 600m from the release point.
- CO2PIPETRANS (BP and Shell; see Section 4.4)
  - These experiments involving pressurised CO<sub>2</sub> releases were carried out at Spadeadam by GL Noble Denton (previously Advantica, currently DNV) for BP in 2006 and for Shell in 2010, with the data made available via the DNV led CO2PIPETRANS JIP. The CO<sub>2</sub> was released from a nozzle ( $\frac{1}{4}$ ,  $\frac{1}{2}$ , or 1") attached to a 5.5m 2" pipe attached to a horizontal cylindrical vessel. The modelled experiments include three set of experiments, i.e. cold steady-state and time-varying releases (liquid storage), and hot supercritical time-varying releases (dense vapour storage). For the cold steady-state tests nitrogen padding gas was used to maintain the pressure and to ensure that the CO<sub>2</sub> remained as liquid in the vessel. For the time-varying tests the CO<sub>2</sub> was released through the nozzle driven only by the pressure in the vessel with the vessel pressure decaying as the release progressed. See Witlox et al. (2014)<sup>8</sup> for further details and references.
- Buried Pipeline and Crater (COSHER; see Section 4.5)



The COSHER project was intended to understand releases from underground  $CO_2$  transmission pipelines simulating loss of containment. As part of the project, two large scale experiments were completed by GL Noble Denton at Spadeadam to provide data under well- defined conditions studying the full-bore rupture of a  $CO_2$  dense phase high pressure underground pipeline at large scale. Concentration data has been published from these tests, which we will refer to as COSHER 1 (Lowesmith, 2013)<sup>6</sup> and COSHER 2 (Ahmad, et al., 2015).<sup>7</sup>

• Kit Fox (see Section 4.6)

In these experiments dense gas (CO<sub>2</sub>) was released from a 1.5mx1.5m ground-level area source for continuous plumes and 20-second finite-duration releases, during both neutral and stable conditions. Experiments were carried out both for a uniform (URA; surface roughness estimated between 0.01 or 0.02 m; adopted value 0.01m) and also using an increased surface roughness (ERP; roughness estimated between 0.12 or 0.24 m closer to the source; adopted value 0.12m). Thus this set of experiments is an ideal set to investigate effects of finite-duration releases (along-wind diffusion) and effects of variable surface roughness. See Witlox et al. (2014)<sup>8</sup> and the Kit Fox validation report<sup>9</sup> for further details.

• Jack Rabbit 2 (see Section 4.6)

In 2015 and 2016 nine large (up to ~ 10 tonnes) 2-phase chlorine releases were carried out at the US Army Dugway Proving Ground in Utah. Three were selected for validation against the UDM (1, 6 and 7). Test 1 incorporated an array of shipping containers (simulating an urban environment) and the other tests were carried out in flat terrain. Measurements of chlorine concentrations and estimates of widths were made out to a distance of 11 km downwind.

• PHMSA Validation Set (see Section 4.7)

In the US, PHMSA has a process for accrediting dispersion models for use with LNG siting applications which involves comparison against a number of experiments. Many of these were already included in previous versions of this report, but we have now collated and updated them to reflect the current prescribed inputs and methods.

- LNG Pool Dispersion
  - Burro This experiment investigated the downwind dispersion that resulted from the spill of LNG onto a pool of water, 58 m in diameter and 1 m in depth. Concentrations were measured from an array of concentration sensors located on an arc at downwind distances of 57, 140, 400 and 800m.
  - Coyote Like for the Burro experiments, the LNG liquid was released from an elevated height with a very low momentum. This results in almost 100% rainout onto a water basin.
  - *Maplin Sands* The experiment investigated the downwind dispersion that resulted from a spill of LNG or LPG onto the surface of the sea.
- Continuous Release Field Scale
  - Thorney Island Continuous. This experiment involved the continuous release of a mixture of Freon and Nitrogen. This has been modelled as a low-momentum continuous ground-level horizontal release.
- Continuous Release Wind Tunnel
  - CHRC-A, BA-Hamburg, BA-TNO. These wind-tunnel experiments involved isothermal releases of CO<sub>2</sub> (CHRC-A) and SF<sub>6</sub> (BA-Hamburg, BA-TNO), with all modelled as vapour area sources at ground level. Only the unobstructed experiments in each series have been modelled, each at field scale rather than at wind tunnel scale.



| Validation<br>Continuous<br>Series | Runs                                                                                    | Material        | Release                                                                                                         | Experimental database    |  |  |
|------------------------------------|-----------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------|--------------------------|--|--|
|                                    |                                                                                         |                 |                                                                                                                 |                          |  |  |
| Prairie Grass (PG)                 | 7-9,13,15,17,34,<br>41,50,58                                                            | SO <sub>2</sub> | Continuous elevated passive dispersion (neutral<br>buoyancy; modelled by UDM as passive Gaussian<br>dispersion) | SMEDIS-8,17; MDA<br>rest |  |  |
| Desert Tortoise (DT)               | 1,2,3,4                                                                                 | Ammonia         | Continuous elevated two-phase jet release                                                                       | SMEDIS 1,2;MDA 3,4       |  |  |
| EEC                                | 360,550,560                                                                             | Propane         | Continuous elevated two-phase jet release                                                                       | SMEDIS                   |  |  |
| FLADIS                             | 9, 16, 24                                                                               | Ammonia         | Continuous elevated two-phase jet release                                                                       | SMEDIS                   |  |  |
| Goldfish (GF)                      | 1,2,3                                                                                   | HF              | Continuous elevated two-phase jet release                                                                       | McFarlane et al.         |  |  |
| Maplin Sands LPG                   | 42, 43, 46, 46, 49,<br>50, 52, 54                                                       | LPG             | Continuous LNG spill on to sea                                                                                  | MDA                      |  |  |
| Schatzmann et al.                  | 4, 10, 11, 13                                                                           | Various Heavy   | Continuous elevated vertical releases of heavy gases (Wind tunnel)                                              |                          |  |  |
| Donal                              | 1, 3, 4, 5, 10, 11, 19,<br>21, 44                                                       | Various Heavy   | Continuous elevated vertical, angled and horizontal releases of heavy gases (Wind tunnel)                       |                          |  |  |
| Vidali                             | 1                                                                                       | CO2             | Continuous elevated vertical release (Wind tunnel)                                                              | -                        |  |  |
| Engie                              | H6, V6, V18                                                                             | LNG             | Continuous elevated releases, horizontal and vertical                                                           | -                        |  |  |
| Thorney Island (TI)                | 6-9, 12, 13, 17-19                                                                      | Freon/N2        | Unpressurised instantaneous ground-level release                                                                | MDA                      |  |  |
| BP steady-state cold               | 1,2,3,5,6,11                                                                            | CO2             | continuous pressurised (cold liquid storage)                                                                    | CO2PIPETRANS MDA         |  |  |
| BP transient hot                   | 8,8R,9                                                                                  | CO2             | time-varying pressurised (supercritical vapour)                                                                 | CO2PIPETRANS MDA         |  |  |
| Shell steady-state cold            | 3,5,11                                                                                  | CO2             | continuous pressurised (cold liquid storage)                                                                    | CO2PIPETRANS MDA         |  |  |
| Shell transient cold               | 1,2,4                                                                                   | CO2             | time-varying pressurised (cold liquid storage)                                                                  | CO2PIPETRANS MDA         |  |  |
| Shell transient hot                | 14,16                                                                                   | CO2             | time-varying pressurised (supercritical vapour)                                                                 | CO2PIPETRANS MDA         |  |  |
| COSHER                             | 1, 2                                                                                    | CO <sub>2</sub> | Buried long pipeline ruptures, dense phase                                                                      | -                        |  |  |
| Kit Fox URA cont.                  | 604,605,606,609,70<br>2,703,705,709,712,8<br>05,808,811                                 | CO2             | Continuous ground-level area source (uniform roughness)                                                         | MDA                      |  |  |
| Kit Fox ERP cont.                  | 305,404,503,504,50<br>8                                                                 | CO2             | Ditto, but enhanced roughness                                                                                   | MDA                      |  |  |
| Kit Fox URA puff                   | 601,602,603,607,60<br>8,704,706,708,710,7<br>11,714,801-<br>804,806,807,<br>809,810,812 | CO2             | 20 seconds ground-level areas source (uniform roughness)                                                        | MDA                      |  |  |
| Kit Fox ERP puff                   | 301-304,306,307,<br>403,501,502,505,50<br>6,507                                         | CO2             | 20 seconds ground-level areas source (enhanced roughness)                                                       | MDA                      |  |  |
| Jack Rabbit II                     | 1, 6, 7                                                                                 | Chlorine        | Short duration (20-40s) of liquid chlorine, vertical or angled downward.                                        | -                        |  |  |
| Maplin Sands (MSN)                 | 27, 34,35                                                                               | LNG             | Continuous methane spill onto sea                                                                               | PHMSA                    |  |  |
| Burro (BU)                         | 3,7,8,9                                                                                 | LNG             | Continuous methane spill onto water basin                                                                       | PHMSA                    |  |  |
| Coyote (CO)                        | 3,5,6                                                                                   | LNG             | Continuous methane spill onto water basin                                                                       | PHMSA                    |  |  |
| Thorney Island (TI)                | 45,47                                                                                   | Freon/N2        | Continuous low-momentum ground-level horizontal release                                                         | PHMSA                    |  |  |
| CHRC                               | CHRC-A                                                                                  | CO2             | Continuous low-momentum ground level vapour source (Wind tunnel)                                                | PHMSA                    |  |  |
| BA-Hamburg                         | DA0120, DAT233                                                                          | SF6             | Continuous low-momentum ground level vapour source (Wind tunnel)                                                | PHMSA                    |  |  |
| BA-TNO                             | TUV01, FLS                                                                              | SF6             | Continuous low-momentum ground level vapour source (Wind tunnel)                                                | PHMSA                    |  |  |

| Table 1. | List of | experiments | for | UDM | validation |
|----------|---------|-------------|-----|-----|------------|
|----------|---------|-------------|-----|-----|------------|



### 3 METHOD FOR UDM SIMULATIONS OF EXPERIMENTS

### 3.1 Definition of input data to validation runs

The input data for each validation run have been obtained from either Hanna et al (1991)<sup>10</sup> or data sheets provided for the SMEDIS<sup>11</sup> project, or from the PHMSA LNG database<sup>2</sup>. The Goldfish experiments are the exception to this rule, where the data were obtained from McFarlane et al<sup>12</sup>; see the UDM Hydrogen Fluoride verification chapter for a full discussion.

Unfortunately not all the input data required for the UDM are available from the above sources. The following general assumptions have been made when defining each validation run:

 Since no flash calculations are carried out within the UDM, the UDM model requires as input the post-flash data in the case of pressurised continuous or pressurised instantaneous releases. These data are the release velocity (continuous release) or expansion energy (instantaneous release), liquid fraction and initial mean droplet size.

For cases DT1, DT2, EEC360, EEC550, EEC560, FLADIS9, FLADIS16 and FLADIS24 the release velocity and liquid fraction were supplied as part of the SMEDIS<sup>11</sup> project. The mean droplet sizes were not provided, and therefore a standalone droplet model was extracted from the Phast discharge model to calculate the mean droplet size. See the UDM thermodynamic theory manual for details.

In the remaining cases the data were obtained by running the Phast discharge model using the specified source conditions; see Section 4.1.1 for a detailed comprehensive discussion.

The release velocities, u<sub>cld</sub><sup>R</sup>, for unpressurised releases (i.e. Prairie Grass), were obtained by dividing the release rate, m<sub>c</sub>, by the source area, A, and the vapour density, ρ<sub>c</sub><sup>v</sup>, of the material at atmospheric temperature, T<sub>a</sub>, and pressure, P<sub>a</sub>:

$$u_{cld}^{R} = \frac{m_{c}}{\left\{A \ \rho_{c}^{V}(T_{a}, P_{a})\right\}} \tag{1}$$

- The default value for the solar flux has been used.<sup>1,2</sup>
- For those experiments in which the UDM predicts rainout the surface type is an important parameter. The choice of surface has been based on the moisture data provided, however, if this is unavailable it is assumed that the surface is wet soil.
- Two averaging times are specified by Hanna<sup>10</sup> one "short" and the other "long". The data were calculated and compared at the longest of the available averaging time. This is except for the Burro and Coyote experiments, for which calculations are carried out for both short and long averaging times (as required by PHMSA).
- The core averaging time for each validation run was set equal to the experimental averaging time. This was carried out to avoid the discontinuities that may occur when applying an averaging time correction to the centreline concentration and cloud width after the transition to passive dispersion.
- UDM simulations for each validation experiment were carried out including the effects of both heat and (in case of dispersion above water) water transfer.

Further details of input data assumptions related to the individual experiments are presented in Chapter 4, while Appendix A lists the precise values of the input data used for the UDM simulation of each validation case is presented in Appendix A.

<sup>&</sup>lt;sup>1</sup> Note that a relation exists between solar flux and the time of year and cloud cover. Since this relation is not implemented in the UDM model, it is chosen to adopt the default value (500 W/m<sup>2</sup>), which may well be inaccurate

<sup>&</sup>lt;sup>2</sup> The solar flux is used exclusively within the pool model. It is shown by a sensitivity analysis that solar flux has little impact to the pool model predictions for spill on land.



### 3.2 Calculation of output data to validation runs

This report provides a graphical representation of the UDM predictions for each individual experiment. These figures also include comparison with the available experimental data. These were obtained from either Hanna et al<sup>10</sup> (including Goldfish) or SMEDIS data sheets<sup>11</sup>. The majority of experiments measured concentrations at one single height. However, a selection of the experiments, for example FLADIS and Desert Tortoise, measured concentrations at a number of different heights.

For each experiment the following figures are produced:

- a) Centreline concentration, c(x, 0, z<sub>cld</sub>), and concentration at a specified height H, C(x, 0, H), as a function of downwind distance, x(m).
- b) Centre-line height  $z_{cld}$  (m) as a function of downwind distance x(m).
- c) Cloud width and cloud depth, H<sub>eff</sub>(1+h<sub>d</sub>), (m) as a function of downwind distance. See Appendix B for the full definition of cloud width. The definition for the cloud depth is laid out in the theory manual
- d) Vapour and liquid temperature (K) as a function of downwind distance

For two-phase releases that form an evaporating pool the figures show the resulting dispersion for each pool segment.

#### 3.3 Statistical measures of performance

Each experimental set (or series) was statistically evaluated to determine the accuracy and precision of the UDM predictions with the observed data. Formulas, as reported by Hanna et al.<sup>10</sup>, were used to calculate the geometric mean bias, MG, and geometric variance, VG, for an experimental dataset.

#### Single experiment

A single experiment with N data points is considered. Let  $x_0 = [x_{01}, x_{02}, \dots, x_{0N}]$  be the array of observed data, and  $x_P$  be the array of predicted data =  $[x_{P1}, x_{P2}, \dots, x_{PN}]$ . The geometric mean bias (MG) and variance (VG) are now defined as follows<sup>3</sup>

$$MG = \exp\left(\overline{\ln x_o} - \overline{\ln x_P}\right) = \exp\left(\overline{\ln \frac{x_0}{x_P}}\right) = \exp\left[\frac{1}{N}\sum_{i=1}^N \ln\left(\frac{x_{0i}}{x_{Pi}}\right)\right]$$
(2)

$$VG = \exp\left[\overline{\left(\ln x_0 - \ln x_P\right)^2}\right] = \exp\left[\overline{\ln\left(\frac{x_0}{x_P}\right)^2}\right] = \exp\left[\frac{1}{N}\sum_{i=1}^N \ln\left(\frac{x_{0i}}{x_{Pi}}\right)^2\right]$$
(3)

where  $\Sigma$  refers to summation of over the N data points, and  $\chi$  indicates a mean variable,

$$\overline{\chi} = \frac{1}{N} \sum_{i=1}^{N} \chi_i \tag{4}$$

Ideally, MG and VG would both equal 1.0. Geometric mean bias (MG) values of 0.5 and 2.0 can be thought of as a factor of 2 in over-predicting and under-predicting the mean, respectively"<sup>13</sup>. Likewise, a geometric variance (VG) of about 1.6 indicates scatter from observed data to predicted data by a factor of 2.

#### Dataset with multiple experiments

Secondly a dataset with M multiple experiments considered. For experiment j (j = 1,..., M), the arrays of observed and predicted data are given by

<sup>&</sup>lt;sup>3</sup> In the MG formula for the concentration, both observed and predicted concentrations are set equal to a threshold concentration if their values are below this threshold (default = 0.001 mole %).



$$\mathbf{x}_{0j} = [\mathbf{x}_{01j}, \mathbf{x}_{02j}, \dots, \mathbf{x}_{0N_j j}], \quad \mathbf{x}_{Pj} = [\mathbf{x}_{P1j}, \mathbf{x}_{P2j}, \dots, \mathbf{x}_{PN_j j}]$$
(5)

Where N<sub>j</sub> is the number of data points from experiment j.

The values  $MG_{tot}$ ,  $VG_{tot}$  for the total dataset can be derived from the values  $MG_j$ ,  $VG_j$  associated with the individual experiments as follows:

$$MG_{tot} = \exp\left[\frac{1}{N_{tot}}\sum_{j=1}^{M}\sum_{i=1}^{N_j}\ln\left(\frac{x_{0ij}}{x_{Pij}}\right)\right] = \prod_{j=1}^{M}\left\{\exp\left[\frac{1}{N_j}\sum_{i=1}^{N_j}\ln\left(\frac{x_{0ij}}{x_{Pij}}\right)\right]\right\}^{\frac{N_j}{N_{tot}}} = \prod_{j=1}^{M}\left\{MG_j\right\}^{\frac{N_j}{N_{tot}}}$$
(6)  
$$VG_{tot} = \exp\left[\frac{1}{N_{tot}}\sum_{j=1}^{M}\sum_{i=1}^{N_j}\ln\left(\frac{x_{0ij}}{x_{Pij}}\right)^2\right] = \prod_{j=1}^{M}\left\{\exp\left[\frac{1}{N_j}\sum_{i=1}^{N_j}\ln\left(\frac{x_{0ij}}{x_{Pij}}\right)^2\right]\right\}^{\frac{N_j}{N_{tot}}} = \prod_{j=1}^{M}\left\{VG_j\right\}^{\frac{N_j}{N_{tot}}}$$
(7)

where  $\Pi$  refers to a product for all datasets, and the total number of data points N<sub>tot</sub> is given by

$$N_{tot} = \sum_{j=1}^{M} N_j \tag{8}$$

Thus it follows that:

$$MG_{tot} = \left\{ \prod_{j=1}^{M} \left( MG_{j} \right)^{N_{j}} \right\}^{\frac{1}{N_{tot}}}, \ VG_{tot} = \left\{ \prod_{j=1}^{M} \left( VG_{j} \right)^{N_{j}} \right\}^{\frac{1}{N_{tot}}}$$
(9)

In case all experiments have the same number of data points, i.e.  $N_1=N_2=...=N_M$ , the above formulas further reduce to:

$$MG_{tot} = \left\{ \prod_{j=1}^{M} \left( MG_{j} \right) \right\}^{\frac{1}{M}}, \ VG_{tot} = \left\{ \prod_{j=1}^{M} \left( VG_{j} \right) \right\}^{\frac{1}{M}}$$
(10)

The above formula (10) has been used for the Kit Fox experiments (where 4 data points apply for each experiment), while the other more general formula (9) has been used for the other experiments. However for some cases one may consider to use nevertheless equation (10), e.g. to avoid that an experiment j with many experimental data points influences too much the total values  $MG_{tot}$  and  $VG_{tot}$ . This should be decided on the basis of the given dataset!



### 4 RESULTS AND DISCUSSION

### 4.1 Continuous releases (excluding CO<sub>2</sub>)

### 4.1.1 Discharge data for two-phase jets

This section<sup>4</sup> details the results of discharge calculations associated with two-phase jets, i.e. the FLADIS ammonia, Desert Tortoise ammonia, EEC propane and Goldfish HF experiments. Input data for these calculations as well as additional input required for the dispersion calculations were obtained from SMEDIS for FLADIS, Desert Tortoise and EEC. For the Goldfish HF experiments, input data were obtained from Chapter 9 of the HGSYSTEM 1.0 Technical Reference Manual<sup>14</sup>. Note that these input data for Goldfish differ from those used in the MDA by Hanna et al.<sup>10</sup>, while the SMEDIS Desert Tortoise data are in line with the values in the MDA. The data provided for the FLADIS experiments are in line with those presented by Nielsen and Ott<sup>15</sup>.

The discharge calculations have been carried out using the leak scenario of the Phast discharge model DISC (version 7.1):

- The DISC model has two methods for modelling the expansion from stagnation conditions to orifice conditions, i.e.
  - the metastable liquid assumption: non-equilibrium at the orifice, liquid remains liquid at the orifice, orifice pressure = ambient pressure
  - o flashing liquid assumption: equilibrium at the orifice, flashing may occur upstream of the orifice
- The DISC model has also the following three options for performing the expansion from the choke point in the orifice to the atmospheric pressure, namely:
  - o Isentropic
  - Conservation of momentum
  - (default option) One of the two options above, with the option selected which results in minimum thermodynamic change between orifice conditions and final conditions. For all current sets of experiments, it was found that this default option corresponded with the isentropic option.

Table 2 summarises the DISC input data and results for the case of the default assumption of metastable liquid assumption in conjunction with conservation of momentum.

#### Flow rate predictions

Table 3 first compares observed flow rates (reported by SMEDIS for the FLADIS, EEC experiments and by Hanna for the DT, GF experiments) against DISC predictions for both cases of 'metastable liquid' and 'flashing':

- It is concluded that the Goldfish predictions are virtually identical for both cases with very close agreement with the data.
- Predictions for EEC and DT presuming 'flashing' are seen to provide considerably improved predictions compared to the 'metastable liquid' assumption. On the other hand, FLADIS results are best presuming 'metastable liquid', with significant under-prediction presuming 'flashing'. Overall the 'metastable liquid' is seen to provide conservative results, with an over-prediction of the observed flow rates.

Note there is an inherent inaccuracy in the measured flow rates with e.g. an accuracy of 18% quoted by Nielsen and Ott<sup>15</sup> for the case of the FLADIS experiments.

The results given in Table 3 are obtained by quick DISC simulations, and more accurate estimate of the input as well more accurate method of modelling may be able to be obtained by means of a more thorough analysis of the experimental data sets. However this was not part of scope of the current work.

#### Predictions of post-expansion data: liquid fraction, velocity and Sauter Mean Diameter (SMD)

Table 3 secondly compares predictions of post-expansion data using the range of model assumptions as described above, and compares these predictions against values of liquid fraction and velocity provided as part of the SMEDIS project:

- Post-flash liquid fractions provided by SMEDIS are in close agreement with the DISC predictions
- Velocity

<sup>&</sup>lt;sup>4</sup> UPDATE. Part of the description of this section may be moved to the ATEX validation report<sup>16</sup>, with a summary retained only in the current section only.



- DISC predictions of final post-expansion velocity presuming metastable liquid assumption are lower than presuming 'flashing' upstream of the orifice. DISC predictions of velocities presuming conservation of entropy result in significant larger velocities than presuming conservation of momentum.
- For the case of the FLADIS experiments, SMEDIS values for velocity are closest to the DISC predictions presuming metastable liquid and conservation of momentum. On the other hand, for the EEC and Desert Tortoise experiments, the SMEDIS values are closest to the DISC predictions presuming flashing and conservation of momentum. Using the isentropic approach, DISC predicts post flash velocities which are much higher than those provided as part of the SMEDIS project.

#### Selection of model assumptions

As indicated above regarding accuracy of flow-rate predictions and agreement of final post-expansion velocity with SMEDIS data, it could be considered to apply the 'flashing' assumption for the Desert Tortoise and EEC experiments. However it was found (see ATEX validation report<sup>16</sup>) that the metastable liquid assumption generates overall more accurate predictions (improved MG,VG values) using the metastable liquid assumption for all sets of experiments (FLADIS, Desert Tortoise and EEC).

With these observations in mind, it was concluded that any non-SMEDIS validation sets, which required post flash data, would obtain them using the Phast discharge model, adopting the conservation of momentum approach in conjunction with the metastable liquid assumption<sup>5</sup>. Thus this approach has been used to obtain values for all post-expansion data (liquid fraction, velocity, SMD).

Table 3 also gives droplet SMD values. The modified CCPS correlation (introduced as the default in Phast 6.7) was used. This should for these cases use the CCPS flashing correlation, but for the conservation of momentum method in conjunction with metastable liquid assumption in fact it uses the mechanical correlation<sup>6</sup> and thus SMD values may be less accurate. However in case rainout would not occur, the precise value of the SMD is not expected to significantly affect the dispersion calculations.

<sup>&</sup>lt;sup>5</sup> UPDATE. At a later stage, it may be considered to no longer use the SMEDIS input data for the SMEDIS validation sets, and to use for these the same approach as for the non-SMEDIS validation datasets.

 $<sup>^{6}</sup>$  Due to calculated partial expansion energy being < 0 (warning ATEX 1010)



| Disc 2 Phase Cons Momentum.xls: Two-pha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ase press                                                                                                                                               | surised rele                                                                                                                                                                                  | eases (FL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ADIS. EEC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Desert Tor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | toise) - Co                                                                                                                                                                                                           | nservation                                                                                                                                              | of Mome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ntum                                                                                                                                                                                                                |                                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                                                                                                                                                                 |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                         |                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Units                                                                                                                                                   |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FLADIS24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                     | DT2                                                                                                                                                                                                               | DT3                                                                                                                                                                                     | DT4                                                                                                                                                                                             | GF1                                                                                                                                                                                                       | GF2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GF3                                                                                                                                                                                                                                                     | Comments [Refs, SMEDIS emails, MDA data in Hanna (1991), Table 3.1 TNER.90.015 for GF.                                                                    |
| mpar boompaon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ••••••                                                                                                                                                  | ,                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                     | 5.2                                                                                                                                                                                                               | 2.0                                                                                                                                                                                     |                                                                                                                                                                                                 |                                                                                                                                                                                                           | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                     | FLADIS report http://w w w.risoe.dk/rispubl/VEA/veapdf/ris-r-898.pdf - Table 2]                                                                           |
| Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                         |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                     |                                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                                                                                                                                                                 |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                         | т Ендіо теротт паріли и и посіли пораби и Енлисаралло-тобо, раг - табе 2                                                                                  |
| Stream name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                       | Ammonia                                                                                                                                                                                       | Ammonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ammonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Propane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Propage                                                                                                                                                                                                               | Propane                                                                                                                                                 | Propage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ammonia                                                                                                                                                                                                             | Ammonia                                                                                                                                                                                                           | Ammonia                                                                                                                                                                                 | Ammonia                                                                                                                                                                                         | Hydrogen                                                                                                                                                                                                  | Hydrogen F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hydrogen F                                                                                                                                                                                                                                              | luoride                                                                                                                                                   |
| Storage state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                         | , <b>1</b> 11101114                                                                                                                                                                           | , annonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | / united ind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Topano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Topuno                                                                                                                                                                                                                | riopano                                                                                                                                                 | ropano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , united and                                                                                                                                                                                                        | / united in a                                                                                                                                                                                                     | , united and                                                                                                                                                                            | / united like                                                                                                                                                                                   | njarogon                                                                                                                                                                                                  | injarogen i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | injarogoni                                                                                                                                                                                                                                              |                                                                                                                                                           |
| Specification flag (0 = P&T&LF, 1 = P&T, 2 = Tbub, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                         |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                       |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                     |                                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                                                                                                                                                                 |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                         |                                                                                                                                                           |
| = Pbub, 4 = Tdew, 5 = Pdew, 6 = P&LF, 7 = T&LF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                         | 6                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                     | 1                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                 | 1                                                                                                                                                                                       | 1                                                                                                                                                                                               | 1                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                       | 6 (saturated liquid), 1 (pressurised non-saturated liquid)                                                                                                |
| Gauge pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pa                                                                                                                                                      | 5.91E±05                                                                                                                                                                                      | 6 96E±05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.69E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 8.40E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6 70E±05                                                                                                                                                                                                              | 9.10E+05                                                                                                                                                | 9.23E±05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.22E±05                                                                                                                                                                                                            | 1.02E+06                                                                                                                                                                                                          | 1.05E+06                                                                                                                                                                                | 1.09E+06                                                                                                                                                                                        | 7.66E±05                                                                                                                                                                                                  | 7 93E±05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.07E±05                                                                                                                                                                                                                                                | SMEDIS for FLADIS/EEC; Hanna (1991) for DT; TNER.90.015 for GF - lower values in Hanna                                                                    |
| Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Γ α<br>K                                                                                                                                                | 286.85                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 284.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                       |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 294.7                                                                                                                                                                                                               | 293.3                                                                                                                                                                                                             |                                                                                                                                                                                         | 297.3                                                                                                                                                                                           | 313.15                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                         | SMEDIS for FLADIS/EEC; Hanna (1991) for DT; TNER.90.015 for GF                                                                                            |
| Liquid fraction (MOLE basis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mol/mol                                                                                                                                                 | 200.05                                                                                                                                                                                        | 230.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 202.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 204.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200.13                                                                                                                                                                                                                | 200.43                                                                                                                                                  | 200.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 234.7                                                                                                                                                                                                               | 293.5                                                                                                                                                                                                             | 233.3                                                                                                                                                                                   | 231.3                                                                                                                                                                                           | 515.13                                                                                                                                                                                                    | 510.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 312.33                                                                                                                                                                                                                                                  |                                                                                                                                                           |
| Vessel data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | moi/moi                                                                                                                                                 |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                     |                                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                                                                                                                                                                 |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                         |                                                                                                                                                           |
| Orifice diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m                                                                                                                                                       | 0.0063                                                                                                                                                                                        | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.004                                                                                                                                                                                                                 | 0.0155                                                                                                                                                  | 0.0155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.081                                                                                                                                                                                                               | 0.0945                                                                                                                                                                                                            | 0.0945                                                                                                                                                                                  | 0.0945                                                                                                                                                                                          | 0.0419                                                                                                                                                                                                    | 0.0242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0242                                                                                                                                                                                                                                                  | not affects final post-expansion data; SMEDIS for FLADIS,EEC; Hanna (1991) for DT,GF                                                                      |
| Atmospheric expansion data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                         | 0.0000                                                                                                                                                                                        | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.004                                                                                                                                                                                                                 | 0.0100                                                                                                                                                  | 0.0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.001                                                                                                                                                                                                               | 0.0040                                                                                                                                                                                                            | 0.0340                                                                                                                                                                                  | 0.0340                                                                                                                                                                                          | 0.0413                                                                                                                                                                                                    | 0.0242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0242                                                                                                                                                                                                                                                  |                                                                                                                                                           |
| Atmospheric pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pa                                                                                                                                                      | 102000                                                                                                                                                                                        | 102000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 101300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100000                                                                                                                                                                                                                | 102500                                                                                                                                                  | 100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90888                                                                                                                                                                                                               | 90990                                                                                                                                                                                                             | 90586                                                                                                                                                                                   | 90280                                                                                                                                                                                           | 101325                                                                                                                                                                                                    | 101325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 101325                                                                                                                                                                                                                                                  | SMEDIS for FLADIS/EEC; Hanna (1991) for DT; TNER.90.015 for GF (Hanna more accurate!)                                                                     |
| · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ra<br>V                                                                                                                                                 | 288.7                                                                                                                                                                                         | 290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 288.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                       | 282.9                                                                                                                                                   | 285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 302                                                                                                                                                                                                                 | 30330                                                                                                                                                                                                             | 307.05                                                                                                                                                                                  | 302.00                                                                                                                                                                                          | 310.4                                                                                                                                                                                                     | 309.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                         | SMEDIS for FLADIS/EEC; Hanna (1991) for DT; TNER.90.015 for GF                                                                                            |
| Atmospheric temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ĸ                                                                                                                                                       | 288.7                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                       |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.132                                                                                                                                                                                                               | 0.175                                                                                                                                                                                                             |                                                                                                                                                                                         | 0.213                                                                                                                                                                                           | 0.0562                                                                                                                                                                                                    | 0.126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                         | SMEDIS for FLADIS/EEC; Hanna (1991) for DT; TNER.90.015 for GF<br>SMEDIS for FLADIS/EEC; Hanna (1991) for DT; TNER.90.015 for GF                          |
| Atmospheric humidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                       | 0.86                                                                                                                                                                                          | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7                                                                                                                                                                                                                   | 0.99                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.132                                                                                                                                                                                                               | 0.175                                                                                                                                                                                                             | 0.148                                                                                                                                                                                   | 0.213                                                                                                                                                                                           | 0.0562                                                                                                                                                                                                    | 0.126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.35                                                                                                                                                                                                                                                    | SMEDIS for FLADIS/EEC; Hanna (1991) for D1; TNER.90.015 for GF                                                                                            |
| PARAMETERS (values to be changed by exp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ert users                                                                                                                                               | only)                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                     |                                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                                                                                                                                                                 |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                         |                                                                                                                                                           |
| Flashing allowed to orifice?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                       | FALSE                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                     |                                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                                                                                                                                                                 |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                         | Metastable liquid assumption (frozen liquid) or (nondefault) flashing                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                         |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                     |                                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                                                                                                                                                                 |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                         |                                                                                                                                                           |
| Use Bernoulli model for metastable liquid releases?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                                                                                                       | FALSE                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                     |                                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                                                                                                                                                                 |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                         | use default compressible model                                                                                                                            |
| Orifice L/D ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                       | 1                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                     |                                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                                                                                                                                                                 |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                         |                                                                                                                                                           |
| ATEX expansion method (0 = min thrm change, 1 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                         |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                     |                                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                                                                                                                                                                 |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                         |                                                                                                                                                           |
| isentropic, 2 = cons moment)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                         | 2                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                     |                                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                                                                                                                                                                 |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                         | Nondefault: conservation of momentum                                                                                                                      |
| Droplet correlation (0=original CCPS, 1= JIPII,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                         | -                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                     |                                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                                                                                                                                                                 |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                         |                                                                                                                                                           |
| 2=TNO, 3=Tilton, 4= Melhem, 5=JIPIII, 6=modified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                         |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                     |                                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                                                                                                                                                                 |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                         |                                                                                                                                                           |
| CCPS, 7=modified CCPS excl. 2PH pipe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                         | 6                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                     |                                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                                                                                                                                                                 |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                         | Modfied CPPS droplet size calculation (default)                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                         | , v                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                     |                                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                                                                                                                                                                 | 27.13                                                                                                                                                                                                     | 10.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.07                                                                                                                                                                                                                                                   | Observed flow rate for GF from Table 3.1 in TNER.90.015 (used for UDM calcs.)                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                         |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                     |                                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                                                                                                                                                                 |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                         |                                                                                                                                                           |
| Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Observ                                                                                                                                                  | 0.4                                                                                                                                                                                           | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.11                                                                                                                                                                                                                  | 3                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70 7                                                                                                                                                                                                                | 111.5                                                                                                                                                                                                             | 130.7                                                                                                                                                                                   | 96.7                                                                                                                                                                                            |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                         |                                                                                                                                                           |
| Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Observ                                                                                                                                                  | 0.4                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       | 1 105527                                                                                                                                                | 1 202554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 79.7                                                                                                                                                                                                                | 111.5                                                                                                                                                                                                             | 130.7                                                                                                                                                                                   | 96.7                                                                                                                                                                                            | 27.67                                                                                                                                                                                                     | 10.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.27                                                                                                                                                                                                                                                   | Observed flow rate: from Hanna for DT/GF, from SMEDIS for FLADIS, EEC                                                                                     |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observe<br>Predict                                                                                                                                      | 1.426133                                                                                                                                                                                      | 0.920825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 1.111064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.19118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.863356                                                                                                                                                                                                              | 3<br>1.195527                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.464976                                                                                                                                                                                                            | 1.505258                                                                                                                                                                                                          | 1.294841                                                                                                                                                                                | 1.780888                                                                                                                                                                                        | 27.67<br>1.111402                                                                                                                                                                                         | 10.46<br>1.001237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.27<br>1.025875                                                                                                                                                                                                                                       |                                                                                                                                                           |
| ERROR STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                         | 1.426133                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.19118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                       |                                                                                                                                                         | 3<br>1.203554<br><b>WARN</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                     | 1.505258                                                                                                                                                                                                          | 1.294841                                                                                                                                                                                | 1.780888                                                                                                                                                                                        | 27.67                                                                                                                                                                                                     | 10.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.27                                                                                                                                                                                                                                                   | Observed flow rate: from Hanna for DT/GF, from SMEDIS for FLADIS, EEC                                                                                     |
| ERROR STATUS<br>Release state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Predict                                                                                                                                                 | 1.426133<br>WARN                                                                                                                                                                              | 0.920825<br>WARN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 1.111064<br>WARN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.19118<br>WARN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.863356<br>WARN                                                                                                                                                                                                      | WARN                                                                                                                                                    | WARN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.464976<br>WARN                                                                                                                                                                                                    | 1.505258<br>WARN                                                                                                                                                                                                  | 1.294841<br>WARN                                                                                                                                                                        | 1.780888<br>WARN                                                                                                                                                                                | 27.67<br>1.111402<br><b>OK</b>                                                                                                                                                                            | 10.46<br>1.001237<br><b>OK</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.27<br>1.025875<br><b>OK</b>                                                                                                                                                                                                                          | Observed flow rate: from Hanna for DT/GF, from SMEDIS for FLADIS, EEC                                                                                     |
| ERROR STATUS<br>Release state<br>Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                         | 1.426133<br>WARN<br>693000                                                                                                                                                                    | 0.920825<br>WARN<br>798000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.111064     WARN     570000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 1.19118<br>WARN<br>940000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.863356<br>WARN<br>769500                                                                                                                                                                                            | WARN<br>1012500                                                                                                                                         | WARN<br>1022625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.464976<br>WARN<br>1012500                                                                                                                                                                                         | 1.505258<br>WARN<br>1115775                                                                                                                                                                                       | 1.294841<br>WARN<br>1137038                                                                                                                                                             | 1.780888<br>WARN<br>1178550                                                                                                                                                                     | 27.67<br>1.111402<br><b>OK</b><br>867342                                                                                                                                                                  | 10.46<br>1.001237<br><b>OK</b><br>894699.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.27<br>1.025875<br><b>OK</b><br>907872                                                                                                                                                                                                                | Observed flow rate: from Hanna for DT/GF, from SMEDIS for FLADIS, EEC                                                                                     |
| ERROR STATUS<br>Release state<br>Pressure<br>Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Predict<br>Pa<br>K                                                                                                                                      | 1.426133<br>WARN                                                                                                                                                                              | 0.920825<br>WARN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.111064     WARN     570000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.19118<br>WARN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.863356<br>WARN                                                                                                                                                                                                      | WARN                                                                                                                                                    | WARN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.464976<br>WARN                                                                                                                                                                                                    | 1.505258<br>WARN                                                                                                                                                                                                  | 1.294841<br>WARN                                                                                                                                                                        | 1.780888<br>WARN                                                                                                                                                                                | 27.67<br>1.111402<br><b>OK</b>                                                                                                                                                                            | 10.46<br>1.001237<br><b>OK</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.27<br>1.025875<br><b>OK</b>                                                                                                                                                                                                                          | Observed flow rate: from Hanna for DT/GF, from SMEDIS for FLADIS, EEC                                                                                     |
| ERROR STATUS<br>Release state<br>Pressure<br>Temperature<br>Liquid fraction (MASS basis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Predict                                                                                                                                                 | 1.426133<br>WARN<br>693000                                                                                                                                                                    | 0.920825<br>WARN<br>798000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.111064     WARN     570000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 1.19118<br>WARN<br>940000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.863356<br>WARN<br>769500                                                                                                                                                                                            | WARN<br>1012500                                                                                                                                         | WARN<br>1022625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.464976<br>WARN<br>1012500                                                                                                                                                                                         | 1.505258<br>WARN<br>1115775                                                                                                                                                                                       | 1.294841<br>WARN<br>1137038                                                                                                                                                             | 1.780888<br>WARN<br>1178550                                                                                                                                                                     | 27.67<br>1.111402<br><b>OK</b><br>867342                                                                                                                                                                  | 10.46<br>1.001237<br><b>OK</b><br>894699.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.27<br>1.025875<br><b>OK</b><br>907872                                                                                                                                                                                                                | Observed flow rate: from Hanna for DT/GF, from SMEDIS for FLADIS, EEC                                                                                     |
| ERROR STATUS<br>Release state<br>Pressure<br>Temperature<br>Liquid fraction (MASS basis)<br>Orifice state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Predict<br>Pa<br>K<br>kg/kg                                                                                                                             | 1.426133<br>WARN<br>693000<br>286.7446<br>1                                                                                                                                                   | 0.920825<br>WARN<br>798000<br>290.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.111064           WARN           570000           281.0403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I.19118           WARN           0         940000           8         284.05           1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.863356<br>WARN<br>769500<br>286.15<br>1                                                                                                                                                                             | WARN<br>1012500<br>286.45<br>1                                                                                                                          | WARN<br>1022625<br>286.65<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.464976<br>WARN<br>1012500<br>294.7                                                                                                                                                                                | 1.505258<br>WARN<br>1115775<br>293.3<br>1                                                                                                                                                                         | 1.294841<br>WARN<br>1137038<br>295.3<br>1                                                                                                                                               | 1.780888<br>WARN<br>1178550<br>297.3<br>1                                                                                                                                                       | 27.67<br>1.111402<br><b>OK</b><br>867342<br>313.15<br>1                                                                                                                                                   | 10.46<br>1.001237<br>OK<br>894699.8<br>310.95<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.27<br>1.025875<br>OK<br>907872<br>312.55<br>1                                                                                                                                                                                                        | Observed flow rate: from Hanna for DT/GF, from SMEDIS for FLADIS, EEC                                                                                     |
| ERROR STATUS<br>Release state<br>Pressure<br>Temperature<br>Liquid fraction (MASS basis)<br>Orifice state<br>Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Predict<br>Pa<br>K<br>kg/kg<br>Pa                                                                                                                       | 1.426133<br>WARN<br>693000<br>286.7446<br>1<br>102000                                                                                                                                         | 0.920825<br>WARN<br>798000<br>290.25<br>1<br>102000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.111064           WARN           570000           281.0403           1           10           101300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I.19118           WARN           0         940000           8         284.05           1         1           0         100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.863356<br>WARN<br>769500<br>286.15<br>1<br>100000                                                                                                                                                                   | WARN<br>1012500<br>286.45<br>1<br>102500                                                                                                                | WARN<br>1022625<br>286.65<br>1<br>100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.464976<br>WARN<br>1012500<br>294.7<br>1<br>90888                                                                                                                                                                  | 1.505258<br>WARN<br>1115775<br>293.3<br>1<br>90990                                                                                                                                                                | 1.294841<br>WARN<br>1137038<br>295.3<br>1<br>90586                                                                                                                                      | 1.780888<br>WARN<br>1178550<br>297.3<br>1<br>90280                                                                                                                                              | 27.67<br>1.111402<br>OK<br>867342<br>313.15<br>1<br>101325                                                                                                                                                | 10.46<br>1.001237<br>OK<br>894699.8<br>310.95<br>1<br>1<br>101325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.27<br>1.025875<br><b>OK</b><br>907872<br>312.55<br>1<br>1<br>101325                                                                                                                                                                                  | Observed flow rate: from Hanna for DT/GF, from SMEDIS for FLADIS, EEC                                                                                     |
| ERROR STATUS Release state Pressure Temperature Liquid fraction (MASS basis) Ortifice state Pressure Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Predict<br>Pa<br>K<br>kg/kg                                                                                                                             | 1.426133<br>WARN<br>693000<br>286.7446<br>1<br>102000<br>286.5729                                                                                                                             | 0.920825<br>WARN<br>798000<br>290.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.111064           WARN           570000           281.0403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I.19118           WARN           0         940000           8         284.05           1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.863356<br>WARN<br>769500<br>286.15<br>1<br>100000                                                                                                                                                                   | WARN<br>1012500<br>286.45<br>1                                                                                                                          | WARN<br>1022625<br>286.65<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.464976<br>WARN<br>1012500<br>294.7                                                                                                                                                                                | 1.505258<br>WARN<br>1115775<br>293.3<br>1                                                                                                                                                                         | 1.294841<br>WARN<br>1137038<br>295.3<br>1                                                                                                                                               | 1.780888<br>WARN<br>1178550<br>297.3<br>1                                                                                                                                                       | 27.67<br>1.111402<br><b>OK</b><br>867342<br>313.15<br>1                                                                                                                                                   | 10.46<br>1.001237<br>OK<br>894699.8<br>310.95<br>1<br>1<br>101325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.27<br>1.025875<br>OK<br>907872<br>312.55<br>1                                                                                                                                                                                                        | Observed flow rate: from Hanna for DT/GF, from SMEDIS for FLADIS, EEC                                                                                     |
| ERROR STATUS Release state Pressure Temperature Liquid fraction (MASS basis) Orifice state Pressure Temperature Liquid fraction (MASS basis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Predict Pa Pa K kg/kg Pa kg/kg                                                                                                                          | 1.426133<br>WARN<br>693000<br>286.7446<br>1<br>102000<br>286.5729<br>1.00E+00                                                                                                                 | 0.920825<br>WARN<br>798000<br>290.25<br>10<br>102000<br>290.0382                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.111064           WARN           0           281.0403           1           0           101300           280.9139           1           1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.19118           WARN           940000           3 284.05           1           1           0           100000           283.3719           1           1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.863356<br>WARN<br>769500<br>286.15<br>1<br>1<br>100000<br>285.5879                                                                                                                                                  | WARN<br>1012500<br>286.45<br>1<br>102500<br>285.6882<br>1                                                                                               | WARN<br>1022625<br>286.65<br>1<br>100000<br>285.8753<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.464976<br>WARN<br>1012500<br>294.7<br>1<br>90888<br>294.4025                                                                                                                                                      | 1.505258<br>WARN<br>1115775<br>293.3<br>1<br>1<br>90990<br>292.9758<br>1                                                                                                                                          | 1.294841<br>WARN<br>1137038<br>295.3<br>1<br>1<br>90586<br>294.9598<br>1                                                                                                                | 1.780888<br>WARN<br>1178550<br>297.3<br>1<br>1<br>90280<br>296.9364<br>1                                                                                                                        | 27.67<br>1.111402<br><b>OK</b><br>867342<br>313.15<br>1<br>101325<br>312.8714<br>1                                                                                                                        | 10.46<br>1.001237<br><b>OK</b><br>894699.8<br>310.95<br>101325<br>310.6659<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.27<br>1.025875<br><b>OK</b><br>907872<br>312.55<br>1<br>1<br>101325<br>312.2579<br>1                                                                                                                                                                 | Observed flow rate: from Hanna for DT/GF, from SMEDIS for FLADIS, EEC                                                                                     |
| ERROR STATUS Release state Pressure Temperature Liquid fraction (MASS basis) Orifice state Pressure Temperature Liquid fraction (MASS basis) Velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Predict<br>Pa<br>K<br>kg/kg<br>Pa                                                                                                                       | 1.426133<br>WARN<br>693000<br>286.7446<br>1<br>102000<br>286.5729<br>1.00E+00<br>49.27421                                                                                                     | 0.920825<br>WARN<br>798000<br>290.25<br>10<br>102000<br>290.0382<br>10<br>53.70876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.111064           WARN           0           281.0403           1           1           281.0403           280.9139           280.9139           43.57772                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.19118           WARN           0         940000           3         284.05           1         1           0         100000           283.3719         1           259.3913         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.863356<br>WARN<br>769500<br>286.15<br>1<br>1<br>00000<br>285.5879<br>1<br>53.25518                                                                                                                                  | WARN<br>1012500<br>286.45<br>1<br>102500<br>285.6882<br>1<br>62.07802                                                                                   | WARN<br>1022625<br>286.65<br>1<br>100000<br>285.8753<br>1<br>62.52898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.464976<br>WARN<br>1012500<br>294.7<br>1<br>90888<br>294.4025<br>1<br>62.16053                                                                                                                                     | 1.505258<br>WARN<br>1115775<br>293.3<br>11<br>90990<br>292.9758<br>1<br>65.41988                                                                                                                                  | 1.294841<br>WARN<br>1137038<br>295.3<br>1<br>1<br>90586<br>294.9598<br>1<br>66.28532                                                                                                    | 1.780888<br>WARN<br>1178550<br>297.3<br>1<br>1<br>90280<br>296.9364<br>1<br>67.78113                                                                                                            | 27.67<br>1.111402<br>OK<br>867342<br>313.15<br>1<br>101325<br>312.8714<br>1<br>41.13356                                                                                                                   | 10.46<br>1.001237<br>OK<br>894699.8<br>310.95<br>1<br>101325<br>310.6659<br>1<br>41.73085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.27<br>1.025875<br><b>OK</b><br>907872<br>312.55<br>1<br>101325<br>312.2579<br>1<br>42.17135                                                                                                                                                          | Observed flow rate: from Hanna for DT/GF, from SMEDIS for FLADIS, EEC                                                                                     |
| ERROR STATUS Release state Pressure Idquid fraction (MASS basis) Orifice state Pressure Temperature Liquid fraction (MASS basis) Velocity Vena contracta diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Predict Pa Pa K kg/kg Pa kg/kg                                                                                                                          | 1.426133<br>WARN<br>693000<br>286.7446<br>1<br>102000<br>286.5729<br>1.00E+00                                                                                                                 | 0.920825<br>WARN<br>798000<br>290.25<br>10<br>102000<br>290.0382<br>10<br>53.70876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.111064           WARN           0           281.0403           1           1           281.0403           280.9139           280.9139           43.57772                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.19118           WARN           0         940000           3         284.05           1         1           0         100000           283.3719         1           259.3913         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.863356<br>WARN<br>769500<br>286.15<br>1<br>1<br>00000<br>285.5879<br>1<br>53.25518                                                                                                                                  | WARN<br>1012500<br>286.45<br>1<br>102500<br>285.6882<br>1                                                                                               | WARN<br>1022625<br>286.65<br>1<br>100000<br>285.8753<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.464976<br>WARN<br>1012500<br>294.7<br>1<br>90888<br>294.4025<br>1<br>62.16053                                                                                                                                     | 1.505258<br>WARN<br>1115775<br>293.3<br>1<br>1<br>90990<br>292.9758<br>1                                                                                                                                          | 1.294841<br>WARN<br>1137038<br>295.3<br>1<br>1<br>90586<br>294.9598<br>1                                                                                                                | 1.780888<br>WARN<br>1178550<br>297.3<br>1<br>1<br>90280<br>296.9364<br>1                                                                                                                        | 27.67<br>1.111402<br><b>OK</b><br>867342<br>313.15<br>1<br>101325<br>312.8714<br>1                                                                                                                        | 10.46<br>1.001237<br>OK<br>894699.8<br>310.95<br>1<br>101325<br>310.6659<br>1<br>41.73085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.27<br>1.025875<br><b>OK</b><br>907872<br>312.55<br>1<br>101325<br>312.2579<br>1<br>42.17135                                                                                                                                                          | Observed flow rate: from Hanna for DT/GF, from SMEDIS for FLADIS, EEC                                                                                     |
| ERROR STATUS ERelease state Pressure Temperature Liquid fraction (MASS basis) Orffice state Pressure Temperature Liquid fraction (MASS basis) Velocity Vena contracta diameter Final (post-expansion) state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Predict Pa Pa K kg/kg Pa kg/kg                                                                                                                          | 1.426133<br>WARN<br>693000<br>286.7446<br>1<br>102000<br>286.5729<br>1.00E+00<br>49.27421<br>4.88E-03                                                                                         | 0.920825<br>WARN<br>798000<br>290.25<br>1<br>102000<br>290.0382<br>1<br>53.70876<br>3.10E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.111064           WARN           570000           281.0403           101300           280.9139           1           3           43.57772           4.88E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.19118           WARN           940000           284.05           1           1           0           100000           283.3719           1           259.3913           1.20E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.863356<br>WARN<br>769500<br>286.15<br>1<br>1<br>00000<br>285.5879<br>1<br>53.25518<br>3.10E-03                                                                                                                      | WARN<br>1012500<br>286.45<br>1<br>102500<br>285.6882<br>1<br>62.07802<br>1.20E-02                                                                       | WARN<br>1022625<br>286.65<br>1<br>100000<br>285.8753<br>1<br>62.52898<br>1.20E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.464976<br>WARN<br>1012500<br>294.7<br>90888<br>294.4025<br>1<br>62.16053<br>6.27E-02                                                                                                                              | 1.505258<br>WARN<br>1115775<br>293.3<br>1<br>1<br>90990<br>292.9758<br>1<br>1<br>65.41988<br>7.32E-02                                                                                                             | 1.294841<br>WARN<br>1137038<br>295.3<br>1<br>1<br>90586<br>294.9598<br>294.9598<br>1<br>66.28532<br>7.32E-02                                                                            | 1.780888<br>WARN<br>1178550<br>297.3<br>1<br>90280<br>296.9364<br>296.9364<br>1<br>67.78113<br>7.32E-02                                                                                         | 27.67<br>1.111402<br><b>OK</b><br>8667342<br>313.15<br>1<br>101325<br>312.8714<br>1<br>41.13356<br>3.25E-02                                                                                               | 10.46<br>1.001237<br><b>OK</b><br>894699.8<br>310.95<br>1<br>101325<br>310.6659<br>1<br>41.73085<br>1.87E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.27<br>1.025875<br><b>OK</b><br>907872<br>312.55<br>1<br>101325<br>312.2579<br>11<br>42.17135<br>1.87E-02                                                                                                                                             | Observed flow rate: from Hanna for DT/GF, from SMEDIS for FLADIS, EEC                                                                                     |
| ERROR STATUS Release state Pressure Temperature Liquid fraction (MASS basis) Orifice state Pressure Temperature Liquid fraction (MASS basis) Velocity Vena contracta diameter Final (post-expansion) state Temperature Emperature Emper | Predict<br>Pa<br>K<br>kg/kg<br>Pa<br>Pa<br>kg/kg<br>-<br>m/s<br>m<br>K                                                                                  | 1.426133<br>WARN<br>693000<br>286.7446<br>102000<br>286.5729<br>1.00E+00<br>49.27421<br>4.88E-03<br>239.8804                                                                                  | 0.920825<br>WARN<br>798000<br>290.25<br>1<br>1<br>0<br>290.0382<br>290.0382<br>1<br>53.70876<br>3.10E-03<br>239.8804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.111064           WARN           570000           281.0403           1           280.9139           43.57772           43.57772           43.977426           239.7426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.19118           WARN           0         940000           3         284.05           1         1           0         100000           2         283.3719           1         1           2         59.3913           3         1.20E-02           2         230.7823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.863356<br>WARN<br>769500<br>286.15<br>100000<br>285.5879<br>1<br>53.25518<br>3.10E-03<br>230.7823                                                                                                                   | WARN<br>1012500<br>286.45<br>102500<br>285.6882<br>102500<br>285.6882<br>1.20E-02<br>1.20E-02<br>231.3409                                               | WARN<br>1022625<br>286.65<br>1<br>100000<br>285.8753<br>1<br>62.52898<br>1.20E-02<br>230.7823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.464976<br>WARN<br>1012500<br>294.7<br>1<br>90888<br>294.4025<br>62.16053<br>6.27E-02<br>237.5967                                                                                                                  | 1.505258<br>WARN<br>1115775<br>293.3<br>1<br>1<br>90990<br>292.9758<br>1<br>65.41988<br>7.32E-02<br>237.6186                                                                                                      | 1.294841<br>WARN<br>1137038<br>295.3<br>0<br>90586<br>294.9598<br>1<br>66.28532<br>7.32E-02<br>237.5315                                                                                 | 1.7808888<br>WARN<br>1178550<br>297.3<br>297.3<br>90280<br>296.9364<br>1<br>67.78113<br>7.32E-02<br>237.4653                                                                                    | 27.67<br>1.111402<br>OK<br>867342<br>313.15<br>101325<br>312.8714<br>1<br>41.13356<br>3.25E-02<br>292.7764                                                                                                | 10.46<br>1.001237<br>OK<br>894699.8<br>310.95<br>101325<br>310.6659<br>141.73085<br>1.87E-02<br>292.7764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.27<br>1.025875<br><b>OK</b><br>907872<br>312.55<br>101325<br>312.2579<br>142.17135<br>1.87E-02<br>292.7764                                                                                                                                           | Observed flow rate: from Hanna for DT/GF, from SMEDIS for FLADIS, EEC                                                                                     |
| ERROR STATUS Release state Pressure Temperature Liquid fraction (MASS basis) Orifice state Pressure Temperature Liquid fraction (MASS basis) Velocity Vela contracta diameter Final (post-expansion) state Temperature Liquid fraction (MASS basis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Predict<br>Pa<br>Kg/kg<br>Pa<br>Pa<br>kg/kg<br>-<br>m/s<br>m<br>K<br>K<br>kg/kg                                                                         | 1.426133<br>WARN<br>693000<br>286.7446<br>1<br>102000<br>286.5729<br>1.00E+00<br>49.27421<br>4.88E-03<br>239.8804<br>0.840029                                                                 | 0.920825<br>WARN<br>798000<br>290.25<br>102000<br>290.0382<br>102000<br>290.0382<br>102000<br>290.0382<br>102000<br>230.8804<br>8.28E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.111064           WARN           570000           570000           280.9139           43.57772           4.88E-03           239.7426           0.85978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.19118           WARN           940000           3 284.05           1           9           9           1           1           1           1           1           1           2           59.3913           3           1.20E-02           2           2           2.30.7823           0.702604                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.863356<br>WARN<br>769500<br>286.15<br>1<br>1<br>00000<br>285.5879<br>1<br>53.25518<br>3.10E-03<br>230.7823<br>0.688616                                                                                              | WARN<br>1012500<br>286.45<br>102500<br>285.6882<br>102500<br>285.6882<br>1207802<br>1.20E-02<br>231.3409<br>0.690474                                    | WARN<br>1022625<br>286.65<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758<br>285.8758                               | 1.464976<br>WARN<br>1012500<br>294.7<br>1<br>90888<br>294.4025<br>1<br>62.16053<br>6.27E-02<br>237.5967<br>0.804972                                                                                                 | 1.505258<br>WARN<br>1115775<br>293.3<br>1<br>1<br>990990<br>292.9758<br>1<br>65.41988<br>7.32E-02<br>237.6186<br>0.810237                                                                                         | 1.294841<br>WARN<br>1137038<br>295.3<br>1<br>1<br>90586<br>294.9598<br>1<br>66.28532<br>7.32E-02<br>237.5315<br>0.802746                                                                | 1.780888<br>WARN<br>1178550<br>297.3<br>1<br>90280<br>296.9364<br>1<br>67.78113<br>7.32E-02<br>237.4653<br>0.795301                                                                             | 27.67<br>1.111402<br>OK<br>867342<br>313.15<br>101325<br>312.8714<br>11.13356<br>3.25E-02<br>292.7764<br>0.857297                                                                                         | 10.46<br>1.001237<br>OK<br>894699.8<br>310.95<br>101325<br>310.6659<br>41.73085<br>1.87E-02<br>292.7764<br>0.873391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.27<br>1.025875<br>OK<br>907872<br>312.55<br>1<br>101325<br>312.2579<br>1<br>42.17135<br>1.87E-02<br>292.7764<br>0.861785                                                                                                                             | Observed flow rate: from Hanna for DT/GF, from SMEDIS for FLADIS, EEC                                                                                     |
| ERROR STATUS Release state Pressure Temperature Liquid fraction (MASS basis) Orifice state Pressure Temperature Liquid fraction (MASS basis) Velocity Vena contracta diameter Fmal (post-expansion) state Temperature Liquid fraction (MASS basis) Velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Predict<br>Pa<br>K<br>kg/kg<br>Pa<br>Pa<br>kg/kg<br>-<br>m/s<br>m<br>K                                                                                  | 1.426133<br>WARN<br>693000<br>286.7446<br>102000<br>286.5729<br>1.00E+00<br>49.27421<br>4.88E-03<br>239.8804                                                                                  | 0.920825<br>WARN<br>798000<br>290.25<br>1<br>1<br>0<br>290.0382<br>290.0382<br>1<br>53.70876<br>3.10E-03<br>239.8804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.111064           WARN           570000           281.0403           1           280.9139           43.57772           43.57772           43.977426           239.7426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.19118           WARN           0         940000           3         284.05           1         1           0         100000           2         283.3719           1         1           2         59.3913           3         1.20E-02           2         230.7823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.863356<br>WARN<br>769500<br>286.15<br>100000<br>285.5879<br>1<br>53.25518<br>3.10E-03<br>230.7823                                                                                                                   | WARN<br>1012500<br>286.45<br>102500<br>285.6882<br>102500<br>285.6882<br>1.20E-02<br>1.20E-02<br>231.3409                                               | WARN<br>1022625<br>286.65<br>1<br>100000<br>285.8753<br>1<br>62.52898<br>1.20E-02<br>230.7823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.464976<br>WARN<br>1012500<br>294.7<br>1<br>90888<br>294.4025<br>62.16053<br>6.27E-02<br>237.5967                                                                                                                  | 1.505258<br>WARN<br>1115775<br>293.3<br>1<br>1<br>90990<br>292.9758<br>1<br>65.41988<br>7.32E-02<br>237.6186                                                                                                      | 1.294841<br>WARN<br>1137038<br>295.3<br>0<br>90586<br>294.9598<br>1<br>66.28532<br>7.32E-02<br>237.5315                                                                                 | 1.7808888<br>WARN<br>1178550<br>297.3<br>297.3<br>90280<br>296.9364<br>1<br>67.78113<br>7.32E-02<br>237.4653                                                                                    | 27.67<br>1.111402<br>OK<br>867342<br>313.15<br>101325<br>312.8714<br>1<br>41.13356<br>3.25E-02<br>292.7764                                                                                                | 10.46<br>1.001237<br>OK<br>894699.8<br>310.95<br>101325<br>310.6659<br>141.73085<br>1.87E-02<br>292.7764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.27<br>1.025875<br><b>OK</b><br>907872<br>312.55<br>101325<br>312.2579<br>142.17135<br>1.87E-02<br>292.7764                                                                                                                                           | Observed flow rate: from Hanna for DT/GF, from SMEDIS for FLADIS, EEC                                                                                     |
| ERROR STATUS Release state Pressure Temperature Liquid fraction (MASS basis) Orifice state Pressure Temperature Liquid fraction (MASS basis) Velocity Vena contracta diameter Final (post-expansion) state Temperature Liquid fraction (MASS basis) Velocity ATEX outputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Predict<br>Pa<br>Kg/kg<br>Pa<br>Pa<br>kg/kg<br>-<br>m/s<br>m<br>K<br>K<br>kg/kg                                                                         | 1.426133<br>WARN<br>693000<br>286.7446<br>1<br>102000<br>286.5729<br>1.00E+00<br>49.27421<br>4.88E-03<br>239.8804<br>0.840029<br>49.27421                                                     | 0.920825<br>WARN<br>798000<br>290.25<br>102000<br>290.0362<br>102000<br>290.0362<br>102000<br>200.0362<br>102000<br>239.8804<br>8.28E-01<br>53.70876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.111064<br>WARN<br>570000<br>281.0403<br>1<br>1<br>43.57772<br>43.57772<br>43.57772<br>43.57772                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.19118           WARN           940000           3           284.05           1           0           283.3719           1           283.3719           1           259.3913           3           20.702604           259.3913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.863356<br>WARN<br>769500<br>286.15<br>1<br>100000<br>285.5879<br>1<br>53.25518<br>3.10E-03<br>230.7823<br>0.688616<br>53.25518                                                                                      | WARN<br>1012500<br>286.45<br>1<br>102500<br>285.6882<br>1.20E-02<br>1.20E-02<br>231.3409<br>0.690474<br>62.07802                                        | WARN<br>1022625<br>286.65<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.855<br>286.8555<br>286.8555<br>286.8555<br>286.8555<br>286.8555<br>286.8555<br>286.8555 | 1.464976<br>WARN<br>1012500<br>294.7<br>1<br>90888<br>294.4025<br>1<br>62.16053<br>6.27E-02<br>237.5967<br>0.804972<br>62.16053                                                                                     | 1.505258<br>WARN<br>1115775<br>293.3<br>1<br>90990<br>292.9758<br>65.41988<br>7.32E-02<br>237.6186<br>0.810237<br>65.41988                                                                                        | 1.294841<br>WARN<br>1137038<br>295.3<br>1<br>90586<br>294.9598<br>1<br>66.28532<br>7.32E-02<br>237.5315<br>0.802746<br>66.28532                                                         | 1.780888<br>WARN<br>1178550<br>297.3<br>90280<br>296.9364<br>1<br>67.78113<br>7.32E-02<br>237.4653<br>0.795301<br>67.78113                                                                      | 27.67<br>1.111402<br>OK<br>867342<br>313.15<br>1<br>101325<br>312.8714<br>1<br>41.13356<br>292.7764<br>0.857297<br>41.13356                                                                               | 10.46<br>1.001237<br>OK<br>894699.8<br>310.95<br>1<br>101325<br>310.6659<br>1.87E-02<br>1.87E-02<br>292.7764<br>0.873391<br>41.73085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.27<br>1.025875<br>OK<br>907872<br>312.55<br>312.2579<br>101325<br>312.2579<br>142.17135<br>1.87E-02<br>922.7764<br>0.861785<br>42.17135                                                                                                              | Observed flow rate: from Hanna for DT/GF, from SMEDIS for FLADIS, EEC                                                                                     |
| ERROR STATUS Release state Pressure Temperature Liquid fraction (MASS basis) Orifice state Pressure Temperature Liquid fraction (MASS basis) Velocity Vena contracta diameter Final (post-expansion) state Temperature Liquid fraction (MASS basis) Velocity ATEX outputs Droplet diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Predict<br>Pa<br>Kg/kg<br>Pa<br>Pa<br>kg/kg<br>-<br>m/s<br>m<br>K<br>K<br>kg/kg                                                                         | 1.426133<br>WARN<br>693000<br>286.7446<br>1<br>102000<br>286.5729<br>1.00E+00<br>49.27421<br>4.88E-03<br>239.8804<br>0.840029                                                                 | 0.920825<br>WARN<br>798000<br>290.25<br>102000<br>290.0362<br>102000<br>290.0362<br>102000<br>200.0362<br>102000<br>239.8804<br>8.28E-01<br>53.70876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.111064<br>WARN<br>570000<br>281.0403<br>1<br>1<br>43.57772<br>43.57772<br>43.57772<br>43.57772                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.19118           WARN           940000           3           284.05           1           0           283.3719           1           283.3719           1           259.3913           3           20.702604           259.3913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.863356<br>WARN<br>769500<br>286.15<br>1<br>1<br>00000<br>285.5879<br>1<br>53.25518<br>3.10E-03<br>230.7823<br>0.688616                                                                                              | WARN<br>1012500<br>286.45<br>1<br>102500<br>285.6882<br>1.20E-02<br>1.20E-02<br>231.3409<br>0.690474<br>62.07802                                        | WARN<br>1022625<br>286.65<br>286.65<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8753<br>1000000<br>285.8758<br>1000000<br>285.8758<br>1000000<br>285.8758<br>1000000<br>285.8758<br>1000000<br>285.8758<br>1000000<br>285.8758<br>1000000<br>285.8758<br>1000000<br>285.8758<br>10000000<br>285.8758<br>1000000<br>285.8758<br>1000000<br>285.8758<br>1000000<br>285.8758<br>1000000<br>285.8758<br>1000000<br>100000<br>100000<br>1000000<br>100000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>10000000<br>100000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.464976<br>WARN<br>1012500<br>294.7<br>1<br>90888<br>294.4025<br>1<br>62.16053<br>6.27E-02<br>237.5967<br>0.804972<br>62.16053                                                                                     | 1.505258<br>WARN<br>1115775<br>293.3<br>1<br>90990<br>292.9758<br>65.41988<br>7.32E-02<br>237.6186<br>0.810237<br>65.41988                                                                                        | 1.294841<br>WARN<br>1137038<br>295.3<br>1<br>90586<br>294.9598<br>1<br>66.28532<br>7.32E-02<br>237.5315<br>0.802746<br>66.28532                                                         | 1.780888<br>WARN<br>1178550<br>297.3<br>90280<br>296.9364<br>1<br>67.78113<br>7.32E-02<br>237.4653<br>0.795301<br>67.78113                                                                      | 27.67<br>1.111402<br>OK<br>867342<br>313.15<br>1<br>101325<br>312.8714<br>1<br>41.13356<br>292.7764<br>0.857297<br>41.13356                                                                               | 10.46<br>1.001237<br>OK<br>894699.8<br>310.95<br>1<br>101325<br>310.6659<br>1.87E-02<br>1.87E-02<br>292.7764<br>0.873391<br>41.73085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.27<br>1.025875<br>OK<br>907872<br>312.55<br>312.2579<br>101325<br>312.2579<br>142.17135<br>1.87E-02<br>922.7764<br>0.861785<br>42.17135                                                                                                              | Observed flow rate: from Hanna for DT/GF, from SMEDIS for FLADIS, EEC                                                                                     |
| ERROR STATUS Release state Pressure Temperature Liquid fraction (MASS basis) Orifice state Pressure Temperature Liquid fraction (MASS basis) Velocity Vena contracta diameter Final (post-expansion) state Temperature Liquid fraction (MASS basis) Velocity Velocity Droplet diameter Final porteater Final p | Predict<br>Pa<br>Kg/kg<br>Pa<br>Pa<br>kg/kg<br>-<br>m/s<br>m<br>K<br>K<br>kg/kg                                                                         | 1.426133<br>WARN<br>693000<br>286.7446<br>1<br>102000<br>286.5729<br>1.00E+00<br>49.27421<br>4.88E-03<br>239.8804<br>0.840029<br>49.27421                                                     | 0.920825<br>WARN<br>798000<br>290.25<br>102000<br>290.0362<br>102000<br>290.0362<br>102000<br>200.0362<br>102000<br>239.8804<br>8.28E-01<br>53.70876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.111064<br>WARN<br>570000<br>281.0403<br>1<br>1<br>43.57772<br>43.57772<br>43.57772<br>43.57772                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.19118           WARN           940000           3           284.05           1           0           283.3719           1           283.3719           1           259.3913           3           20.702604           259.3913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.863356<br>WARN<br>769500<br>286.15<br>1<br>100000<br>285.5879<br>1<br>53.25518<br>3.10E-03<br>230.7823<br>0.688616<br>53.25518                                                                                      | WARN<br>1012500<br>286.45<br>1<br>102500<br>285.6882<br>1.20E-02<br>1.20E-02<br>231.3409<br>0.690474<br>62.07802                                        | WARN<br>1022625<br>286.65<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>1000000<br>100000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>10000000<br>10000000<br>100000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.464976<br>WARN<br>1012500<br>294.7<br>1<br>90888<br>294.4025<br>1<br>62.16053<br>6.27E-02<br>237.5967<br>0.804972<br>62.16053                                                                                     | 1.505258<br>WARN<br>1115775<br>293.3<br>1<br>90990<br>292.9758<br>65.41988<br>7.32E-02<br>237.6186<br>0.810237<br>65.41988                                                                                        | 1.294841<br>WARN<br>1137038<br>295.3<br>1<br>90586<br>294.9598<br>1<br>66.28532<br>7.32E-02<br>237.5315<br>0.802746<br>66.28532                                                         | 1.780888<br>WARN<br>1178550<br>297.3<br>90280<br>296.9364<br>1<br>67.78113<br>7.32E-02<br>237.4653<br>0.795301<br>67.78113                                                                      | 27.67<br>1.111402<br>OK<br>867342<br>313.15<br>1<br>101325<br>312.8714<br>1<br>41.13356<br>292.7764<br>0.857297<br>41.13356                                                                               | 10.46<br>1.001237<br>OK<br>894699.8<br>310.95<br>1<br>101325<br>310.6659<br>1.87E-02<br>1.87E-02<br>292.7764<br>0.873391<br>41.73085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.27<br>1.025875<br>OK<br>907872<br>312.55<br>312.2579<br>101325<br>312.2579<br>142.17135<br>1.87E-02<br>922.7764<br>0.861785<br>42.17135                                                                                                              | Observed flow rate: from Hanna for DT/GF, from SMEDIS for FLADIS, EEC                                                                                     |
| ERROR STATUS Release state Pressure Temperature Liquid fraction (MASS basis) Ortifice state Pressure Temperature Liquid fraction (MASS basis) Velocity Vena contracta diameter Final (post-expansion) state Temperature Liquid fraction (MASS basis) Velocity ATEX outputs Droplet diameter Flashing or mechanical (1 = mechanical, 2 = flash, 3 = transition)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Predict<br>Pa<br>Kg/kg<br>Pa<br>Pa<br>kg/kg<br>-<br>m/s<br>m<br>K<br>K<br>kg/kg                                                                         | 1.426133<br>WARN<br>693000<br>286.7446<br>1<br>102000<br>286.5729<br>1.00E+00<br>49.27421<br>4.88E-03<br>239.8804<br>0.840029<br>49.27421                                                     | 0.920825<br>WARN<br>798000<br>290.25<br>102000<br>290.0362<br>102000<br>290.0362<br>102000<br>200.0362<br>102000<br>239.8804<br>8.28E-01<br>53.70876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.111064<br>WARN<br>570000<br>281.0403<br>1<br>1<br>43.57772<br>43.57772<br>43.57772<br>43.57772                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.19118           WARN           940000           3           284.05           1           0           283.3719           1           283.3719           1           259.3913           3           20.702604           259.3913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.863356<br>WARN<br>769500<br>286.15<br>1<br>100000<br>285.5879<br>1<br>53.25518<br>3.10E-03<br>230.7823<br>0.688616<br>53.25518                                                                                      | WARN<br>1012500<br>286.45<br>1<br>102500<br>285.6882<br>1.20E-02<br>1.20E-02<br>231.3409<br>0.690474<br>62.07802                                        | WARN<br>1022625<br>286.65<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>1000000<br>100000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>10000000<br>10000000<br>100000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.464976<br>WARN<br>1012500<br>294.7<br>1<br>90888<br>294.4025<br>1<br>62.16053<br>6.27E-02<br>237.5967<br>0.804972<br>62.16053                                                                                     | 1.505258<br>WARN<br>1115775<br>293.3<br>1<br>90990<br>292.9758<br>65.41988<br>7.32E-02<br>237.6186<br>0.810237<br>65.41988                                                                                        | 1.294841<br>WARN<br>1137038<br>295.3<br>1<br>90586<br>294.9598<br>1<br>66.28532<br>7.32E-02<br>237.5315<br>0.802746<br>66.28532                                                         | 1.780888<br>WARN<br>1178550<br>297.3<br>90280<br>296.9364<br>1<br>67.78113<br>7.32E-02<br>237.4653<br>0.795301<br>67.78113                                                                      | 27.67<br>1.111402<br>OK<br>867342<br>313.15<br>1<br>101325<br>312.8714<br>1<br>41.13356<br>292.7764<br>0.857297<br>41.13356                                                                               | 10.46<br>1.001237<br>OK<br>894699.8<br>310.95<br>1<br>101325<br>310.6659<br>1.87E-02<br>1.87E-02<br>292.7764<br>0.873391<br>41.73085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.27<br>1.025875<br>OK<br>907872<br>312.55<br>312.2579<br>101325<br>312.2579<br>142.17135<br>1.87E-02<br>922.7764<br>0.861785<br>42.17135                                                                                                              | Observed flow rate: from Hanna for DT/GF, from SMEDIS for FLADIS, EEC                                                                                     |
| ERROR STATUS Release state Pressure Temperature Liquid fraction (MASS basis) Orifice state Pressure Temperature Liquid fraction (MASS basis) Velocity Vena contracta diameter Final (post-expansion) state Temperature Liquid fraction (MASS basis) Velocity ATEX outputs Droplet diameter Flashing or mechanical (1 = mechanical, 2 = flash, 3 = transition)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Predict<br>Pa<br>Kg/kg<br>Pa<br>Pa<br>kg/kg<br>-<br>m/s<br>m<br>K<br>K<br>kg/kg                                                                         | 1.426133<br>WARN<br>693000<br>286.7446<br>1<br>102000<br>286.5729<br>1.00E+00<br>49.27421<br>4.88E-03<br>239.8804<br>0.840029<br>49.27421                                                     | 0.920825<br>WARN<br>798000<br>290.25<br>102000<br>290.0362<br>102000<br>290.0362<br>102000<br>200.0362<br>102000<br>239.8804<br>8.28E-01<br>53.70876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.111064<br>WARN<br>570000<br>281.0403<br>1<br>1<br>43.57772<br>43.57772<br>43.57772<br>43.57772                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.19118           WARN           940000           3           284.05           1           0           283.3719           1           283.3719           1           259.3913           3           20.702604           259.3913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.863356<br>WARN<br>769500<br>286.15<br>1<br>100000<br>285.5879<br>1<br>53.25518<br>3.10E-03<br>230.7823<br>0.688616<br>53.25518                                                                                      | WARN<br>1012500<br>286.45<br>1<br>102500<br>285.6882<br>1.20E-02<br>1.20E-02<br>231.3409<br>0.690474<br>62.07802                                        | WARN<br>1022625<br>286.65<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>1000000<br>100000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>10000000<br>10000000<br>100000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.464976<br>WARN<br>1012500<br>294.7<br>1<br>90888<br>294.4025<br>1<br>62.16053<br>6.27E-02<br>237.5967<br>0.804972<br>62.16053                                                                                     | 1.505258<br>WARN<br>1115775<br>293.3<br>1<br>90990<br>292.9758<br>65.41988<br>7.32E-02<br>237.6186<br>0.810237<br>65.41988                                                                                        | 1.294841<br>WARN<br>1137038<br>295.3<br>1<br>90586<br>294.9598<br>1<br>66.28532<br>7.32E-02<br>237.5315<br>0.802746<br>66.28532                                                         | 1.780888<br>WARN<br>1178550<br>297.3<br>90280<br>296.9364<br>1<br>67.78113<br>7.32E-02<br>237.4653<br>0.795301<br>67.78113                                                                      | 27.67<br>1.111402<br>OK<br>867342<br>313.15<br>1<br>101325<br>312.8714<br>1<br>41.13356<br>292.7764<br>0.857297<br>41.13356                                                                               | 10.46<br>1.001237<br>OK<br>894699.8<br>310.95<br>1<br>101325<br>310.6659<br>1.87E-02<br>1.87E-02<br>292.7764<br>0.873391<br>41.73085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.27<br>1.025875<br>OK<br>907872<br>312.55<br>312.2579<br>101325<br>312.2579<br>142.17135<br>1.87E-02<br>922.7764<br>0.861785<br>42.17135                                                                                                              | Observed flow rate: from Hanna for DT/GF, from SMEDIS for FLADIS, EEC                                                                                     |
| ERROR STATUS Release state Pressure Temperature Liquid fraction (MASS basis) Orifice state Pressure Temperature Liquid fraction (MASS basis) Velocity Vena contracta diameter Final (post-expansion) state Temperature Liquid fraction (MASS basis) Velocity ATEX outputs Droplet diameter Flashing or mechanical (1 = mechanical, 2 = flash, 3 = transition)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Predict<br>Pa<br>Kg/kg<br>Pa<br>Pa<br>kg/kg<br>-<br>m/s<br>m<br>K<br>K<br>kg/kg                                                                         | 1.426133<br>WARN<br>693000<br>286.7446<br>1<br>102000<br>286.5729<br>1.00E+00<br>49.27421<br>4.88E-03<br>239.8804<br>0.840029<br>49.27421                                                     | 0.920825<br>WARN<br>798000<br>290.25<br>102000<br>290.0362<br>102000<br>290.0362<br>102000<br>200.0362<br>102000<br>239.8804<br>8.28E-01<br>53.70876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.111064<br>WARN<br>570000<br>281.0403<br>1<br>1<br>43.57772<br>43.57772<br>43.57772<br>43.57772                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.19118           WARN           940000           3           284.05           1           0           283.3719           1           283.3719           1           259.3913           3           20.702604           259.3913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.863356<br>WARN<br>769500<br>286.15<br>1<br>100000<br>285.5879<br>1<br>53.25518<br>3.10E-03<br>230.7823<br>0.688616<br>53.25518                                                                                      | WARN<br>1012500<br>286.45<br>1<br>102500<br>285.6882<br>1.20E-02<br>1.20E-02<br>231.3409<br>0.690474<br>62.07802                                        | WARN<br>1022625<br>286.65<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>1000000<br>100000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>10000000<br>10000000<br>100000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.464976<br>WARN<br>1012500<br>294.7<br>1<br>90888<br>294.4025<br>1<br>62.16053<br>6.27E-02<br>237.5967<br>0.804972<br>62.16053                                                                                     | 1.505258<br>WARN<br>1115775<br>293.3<br>1<br>90990<br>292.9758<br>65.41988<br>7.32E-02<br>237.6186<br>0.810237<br>65.41988                                                                                        | 1.294841<br>WARN<br>1137038<br>295.3<br>1<br>90586<br>294.9598<br>1<br>66.28532<br>7.32E-02<br>237.5315<br>0.802746<br>66.28532                                                         | 1.780888<br>WARN<br>1178550<br>297.3<br>90280<br>296.9364<br>1<br>67.78113<br>7.32E-02<br>237.4653<br>0.795301<br>67.78113                                                                      | 27.67<br>1.111402<br>OK<br>867342<br>313.15<br>1<br>101325<br>312.8714<br>1<br>41.13356<br>292.7764<br>0.857297<br>41.13356                                                                               | 10.46<br>1.001237<br>OK<br>894699.8<br>310.95<br>1<br>101325<br>310.6659<br>1.87E-02<br>1.87E-02<br>292.7764<br>0.873391<br>41.73085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.27<br>1.025875<br>OK<br>907872<br>312.55<br>312.2579<br>101325<br>312.2579<br>142.17135<br>1.87E-02<br>922.7764<br>0.861785<br>42.17135                                                                                                              | Observed flow rate: from Hanna for DT/GF, from SMEDIS for FLADIS, EEC                                                                                     |
| ERROR STATUS Release state Pressure Temperature Liquid fraction (MASS basis) Orifice state Pressure Temperature Liquid fraction (MASS basis) Velocity Vena contracta diameter Final (post-expansion) state Temperature Liquid fraction (MASS basis) Velocity TEX outputs Droplet diameter Tashing or mechanical (1 = mechanical, 2 = flash, 3 = transition) ATEX expansion method (1 = isentropic, 2 = cons momentum)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Predict<br>Pa<br>Kg/kg<br>Pa<br>Pa<br>kg/kg<br>-<br>m/s<br>m<br>K<br>K<br>kg/kg                                                                         | 1,426133<br>WARN<br>693000<br>266.7446<br>102000<br>266.5729<br>1,00E+00<br>49.27421<br>4.88E-03<br>239.8804<br>0.840029<br>49.27421<br>1,44E-04<br>1<br>2<br>5.18E-02<br>5.18E-02            | 0.920825<br>WARN<br>798000<br>290.25<br>102000<br>290.0382<br>290.0382<br>233.8804<br>8.28E-01<br>53.70876<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E- | 1.111064<br>WARN<br>570000<br>281.0403<br>101300<br>280.9133<br>11<br>43.57772<br>43.57772<br>43.57772<br>233.7422<br>0.85975<br>43.57772<br>1.87E-04<br>1.87E-04<br>1<br>1.87E-04<br>1<br>2232.4425<br>4.88E-0325<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04 | 1.19118           WARN           9.40000           2.84.05           1           2.84.05           2.83.3719           2.83.3719           2.83.3719           1.205-02           0.702604           2.59.3913           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02 | 1.863356<br>WARN<br>769500<br>286.15<br>100000<br>285.5879<br>1<br>100000<br>285.5879<br>1<br>53.25518<br>3.10E-03<br>5.325518<br>3.10E-03<br>5.67E-05<br>1<br>2<br>2.55E-02<br>2                                     | WARN<br>1012500<br>286.45<br>1<br>102500<br>285.6882<br>1<br>62.07802<br>1.20E-02<br>231.3409<br>0.690474<br>62.07802<br>3.97E-05<br>1<br>2<br>9.73E-02 | WARN<br>1022625<br>286.65<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>285.8753<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>1000000<br>100000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>10000000<br>10000000<br>100000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,464976<br>WARN<br>1012500<br>294.7<br>1<br>90888<br>294.4025<br>1 1<br>62.16053<br>6.27E-02<br>237.5967<br>0.804972<br>62.16053<br>1.08E-04<br>1.08E-04<br>1<br>237.5967                                          | 1.505258<br>WARN<br>1115775<br>293.3<br>1<br>90990<br>292.9758<br>1<br>65.41988<br>7.32E-02<br>237.6186<br>0.810237<br>65.41988                                                                                   | 1.294841<br>WARN<br>1137038<br>295.3<br>1<br>1<br>90586<br>294.9598<br>66.28532<br>7.32E-02<br>237.5315<br>0.802746<br>66.28532<br>9.67E-05<br>1<br>1<br>2<br>0.90201                   | 1.780888<br>WARN<br>1178550<br>297.3<br>1<br>90280<br>296.9364<br>1<br>1<br>67.78113<br>7.32E-02<br>237.4653<br>0.795301<br>67.78113<br>9.29E-05<br>1<br>2<br>0.917972<br>2<br>0.917972         | 27.67<br>1.111402<br>OK<br>867342<br>313.15<br>1<br>101325<br>312.8714<br>1<br>41.13356<br>292.7764<br>0.857297<br>41.13356                                                                               | 10.46<br>1.001237<br>OK<br>894699.8<br>310.95<br>11<br>101225<br>310.6659<br>1<br>101225<br>292.7764<br>0.873391<br>41.73085<br>1.87E-02<br>292.7764<br>0.873391<br>41.73085<br>1.87E-02<br>292.7764<br>0.873391<br>41.73085<br>292.7764<br>0.873391<br>41.73085<br>292.7764<br>0.873391<br>41.73085<br>292.7764<br>0.873391<br>41.73085<br>292.7764<br>0.873391<br>41.73085<br>292.7764<br>0.873391<br>41.73085<br>292.7764<br>0.873391<br>41.73085<br>292.7764<br>0.873391<br>41.73085<br>292.7764<br>0.873391<br>41.73085<br>292.7764<br>0.873391<br>41.73085<br>202.7764<br>0.873391<br>41.73085<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.02220<br>0.02220<br>0.022200000000 | 10.27<br>1.025875<br>OK<br>907872<br>312.55<br>312.2579<br>1<br>101325<br>312.2579<br>1<br>101325<br>312.2579<br>1<br>292.7764<br>0.861785<br>42.17135<br>1.87E-02<br>292.7764<br>0.861785<br>42.17135<br>3.54E-04<br>2<br>20.125752<br>2<br>0.125752   | Observed flow rate: from Hanna for DT/GF, from SMEDIS for FLADIS, EEC                                                                                     |
| ERROR STATUS Release state Pressure Temperature Liquid fraction (MASS basis) Orifice state Pressure Temperature Liquid fraction (MASS basis) Velocity Vena contracta diameter Final (post-expansion) state Temperature Liquid fraction (MASS basis) Velocity ATEX outputs Droplet diameter Flashing or mechanical (1 = mechanical, 2 = flash, 3 = transition) ATEX expansion method (1 = isentropic, 2 = cons momentum) Expanded diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Predict<br>Pa<br>Kg/kg<br>Pa<br>Pa<br>kg/kg<br>-<br>m/s<br>m<br>K<br>K<br>kg/kg                                                                         | 1,426133<br>WARN<br>693000<br>286.7446<br>1<br>102000<br>286.5729<br>1.00E+00<br>49.27421<br>4.88E-03<br>239.8804<br>0.840029<br>49.27421<br>1.44E-04<br>1.44E-04<br>1<br>22                  | 0.920825<br>WARN<br>798000<br>290.25<br>102000<br>290.082<br>290.082<br>3.10E-03<br>3.10E-03<br>3.10E-03<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.111064<br>WARN<br>570000<br>281.0403<br>101300<br>280.9133<br>11<br>43.57772<br>43.57772<br>43.57772<br>233.7422<br>0.85975<br>43.57772<br>1.87E-04<br>1.87E-04<br>1<br>1.87E-04<br>1<br>2232.4425<br>4.88E-0325<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04 | 1.19118           WARN           9.40000           2.84.05           1           2.84.05           2.83.3719           2.83.3719           2.83.3719           1.205-02           0.702604           2.59.3913           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02           1.205-02 | 1.863356<br>WARN<br>769500<br>286.15<br>1<br>100000<br>285.5879<br>3.10E-03<br>53.25518<br>3.10E-03<br>5.325518<br>5.325518<br>5.325518<br>5.67E-05<br>1<br>2<br>2.55E-02                                             | WARN 1012500 286.45 1 102500 285.6882 1 202502 120E-02 231.3409 0.690474 62.07802 3.97E-05 1 2                                                          | WARN<br>10226255<br>288.655<br>1<br>100000<br>285.8753<br>1<br>62.52898<br>1.20E-02<br>0.686789<br>62.52898<br>4.06E-05<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,464976<br>WARN<br>1012500<br>294.7.<br>1<br>90888<br>90888<br>294.4025<br>1.62.16053<br>62.16053<br>62.16053<br>1.08E-04<br>1<br>1.08E-04<br>1<br>2<br>0.768146                                                   | 1.505258<br>WARN<br>1115775<br>293.3<br>1<br>90990<br>292.9758<br>1<br>55.41988<br>7.32E-02<br>237.6186<br>0.810237<br>65.41988<br>9.78E-05<br>1<br>1<br>22<br>22<br>22<br>23<br>23<br>23<br>23<br>23<br>23<br>23 | 1.294841<br>WARN<br>1137038<br>295.3<br>1<br>90586<br>294.9598<br>1<br>66.28532<br>7.32E-02<br>237.5315<br>0.802746<br>66.28532<br>9.67E-05<br>1<br>2                                   | 1.780888<br>WARN<br>1178550<br>297.3<br>1<br>90280<br>296.364<br>1<br>67.78113<br>7.32E-02<br>237.4653<br>0.795501<br>9.29E-05<br>9.29E-05<br>1<br>2                                            | 27.67<br>1.111402<br>OK<br>867342<br>313.15<br>1<br>101325<br>312.8714<br>1<br>41.13356<br>292.7764<br>0.857297<br>41.13356<br>3.60E-04<br>22<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 10.46<br>1.001237<br>0K<br>894699.8<br>310.95<br>310.95<br>1<br>1<br>101325<br>330.6659<br>1<br>1.01325<br>1.87E-02<br>292.7764<br>41.73085<br>3.54E-04<br>2.2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.27<br>1.025875<br>OK<br>907872<br>312.55<br>312.2579<br>1<br>101325<br>312.2579<br>1<br>101325<br>312.2579<br>1<br>292.7764<br>0.861785<br>42.17135<br>1.87E-02<br>292.7764<br>0.861785<br>42.17135<br>3.54E-04<br>2<br>20.125752<br>2<br>0.125752   | Observed flow rate: from Hanna for DT/GF, from SMEDIS for FLADIS, EEC                                                                                     |
| ERROR STATUS Release state Pressure Temperature Liquid fraction (MASS basis) Orifice state Pressure Temperature Liquid fraction (MASS basis) Velocity Velocity Velocity Velocity Velocity Complet diameter Liquid fraction (MASS basis) Velocity Temperature Liquid fraction (MASS basis) Velocity Droplet diameter Flashing or mechanical (1 = mechanical, 2 = flash, 3 = transition) ATEX expansion method (1 = isentropic, 2 = cons momentum) Expanded diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Predict<br>Pa<br>Kg/kg/kg<br>Pa<br>kg/kg/kg<br>Pa<br>kg/kg<br>M/S<br>M/S<br>Kg/kg<br>m/s<br>m/s<br>m/s<br>m/s<br>m/s<br>m/s<br>m/s<br>m/s<br>m/s<br>m/s | 1,426133<br>WARN<br>693000<br>266.7446<br>102000<br>266.5729<br>1,00E+00<br>49.27421<br>4.88E-03<br>239.8804<br>0.840029<br>49.27421<br>1,44E-04<br>1<br>2<br>5.18E-02<br>5.18E-02            | 0.920825<br>WARN<br>798000<br>290.25<br>102000<br>290.0382<br>290.0382<br>233.8804<br>8.28E-01<br>53.70876<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E- | 1.111064<br>WARN<br>570000<br>281.0403<br>101300<br>280.9133<br>11<br>43.57772<br>43.57772<br>43.57772<br>233.7422<br>0.85975<br>43.57772<br>1.87E-04<br>1.87E-04<br>1<br>1.87E-04<br>1<br>2232.4425<br>4.88E-0325<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04 | 1.19118           WARN           940000           284.05           10           11           283.3719           293.3713           1.20E-02           20.702604           29.3913           4.54E-05           11           2           20.702604           20.702604           20.702604           20.702604           20.702604           20.702604           20.702604           20.702604                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.863356<br>WARN<br>769500<br>286.15<br>100000<br>285.5879<br>1<br>100000<br>285.5879<br>1<br>53.25518<br>3.10E-03<br>5.325518<br>3.10E-03<br>5.67E-05<br>1<br>2<br>2.55E-02<br>2                                     | WARN<br>1012500<br>286.45<br>1<br>102500<br>285.6882<br>1<br>62.07802<br>1.20E-02<br>231.3409<br>0.690474<br>62.07802<br>3.97E-05<br>1<br>2<br>9.73E-02 | WARN<br>1022625<br>286.65<br>1<br>100000<br>285.8753<br>1.20E-02<br>230.7823<br>0.686789<br>62.52898<br>4.06E-05<br>1<br>2.0098936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,464976<br>WARN<br>1012500<br>294.7.<br>1<br>90888<br>90888<br>294.4025<br>1.62.16053<br>62.16053<br>62.16053<br>1.08E-04<br>1<br>1.08E-04<br>1<br>2<br>0.768146                                                   | 1.505258<br><b>WARN</b><br>1115775<br>293.3<br>1115775<br>293.9<br>909900<br>292.9758<br>65.41988<br>7.32E-02<br>237.6186<br>0.810237<br>65.41988<br>9.78E-05<br>1<br>2<br>0.885142                               | 1.294841<br>WARN<br>1137038<br>295.3<br>1<br>1<br>90586<br>294.9598<br>66.28532<br>7.32E-02<br>237.5315<br>0.802746<br>66.28532<br>9.67E-05<br>1<br>1<br>2<br>0.90201                   | 1.780888<br>WARN<br>1178550<br>297.3<br>1<br>90280<br>296.9364<br>1<br>1<br>67.78113<br>7.32E-02<br>237.4653<br>0.795301<br>67.78113<br>9.29E-05<br>1<br>2<br>0.917972<br>2<br>0.917972         | 27.67<br>1.111402<br>OK<br>867342<br>313.15<br>11<br>101325<br>312.8714<br>1<br>101325<br>3.25E-02<br>292.7764<br>0.857297<br>41.13356<br>3.60E-04<br>2<br>0.220967                                       | 10.46<br>1.001237<br>OK<br>894699.8<br>310.95<br>11<br>101225<br>310.6659<br>1<br>101225<br>292.7764<br>0.873391<br>41.73085<br>1.87E-02<br>292.7764<br>0.873391<br>41.73085<br>1.87E-02<br>292.7764<br>0.873391<br>41.73085<br>292.7764<br>0.873391<br>41.73085<br>292.7764<br>0.873391<br>41.73085<br>292.7764<br>0.873391<br>41.73085<br>292.7764<br>0.873391<br>41.73085<br>292.7764<br>0.873391<br>41.73085<br>292.7764<br>0.873391<br>41.73085<br>292.7764<br>0.873391<br>41.73085<br>292.7764<br>0.873391<br>41.73085<br>292.7764<br>0.873391<br>41.73085<br>202.7764<br>0.873391<br>41.73085<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.02220<br>0.02220<br>0.022200000000 | 10.27<br>1.025875<br>OK<br>907872<br>312.55<br>312.2579<br>1<br>101325<br>312.2579<br>1<br>101325<br>312.2579<br>1<br>292.7764<br>0.861785<br>42.17135<br>1.87E-02<br>292.7764<br>0.861785<br>42.17135<br>3.54E-04<br>2<br>20.125752<br>2<br>0.125752   | Observed flow rate: from Hanna for DT/GF, from SMEDIS for FLADIS, EEC                                                                                     |
| ERROR STATUS Release state Pressure Temperature Liquid fraction (MASS basis) Orifice state Pressure Temperature Liquid fraction (MASS basis) Velocity Vena contracta diameter Final (post-expansion) state Temperature Liquid fraction (MASS basis) Velocity ATEX outputs Droplet diameter Flashing or mechanical (1 = mechanical, 2 = flash, 3 = transition) ATEX expansion method (1 = isentropic, 2 = cons momentum) Expanded diameter Partial expansion energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Predict<br>Pa<br>Kg/kg/kg<br>Pa<br>kg/kg/kg<br>Pa<br>kg/kg<br>M/S<br>M/S<br>Kg/kg<br>m/s<br>m/s<br>m/s<br>m/s<br>m/s<br>m/s<br>m/s<br>m/s<br>m/s<br>m/s | 1,426133<br>WARN<br>693000<br>266.7446<br>102000<br>266.5729<br>1,00E+00<br>49.27421<br>4.88E-03<br>239.8804<br>0.840029<br>49.27421<br>1,44E-04<br>1<br>2<br>5.18E-02<br>5.18E-02            | 0.920825<br>WARN<br>798000<br>290.25<br>102000<br>290.0382<br>290.0382<br>233.8804<br>8.28E-01<br>53.70876<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E-04<br>1.22E- | 1.111064<br>WARN<br>570000<br>281.0403<br>101300<br>280.9133<br>4.357772<br>239.7426<br>0.85978<br>4.357772<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.87E-04<br>1.8                                                                                                                                                                              | 1.19118           WARN           940000           284.05           1           284.05           283.3719           283.3719           293.313           1.205-02           30.702604           293.9313           1.205-02           30.702604           29.3913           22           230.7823           30.702604           29.685-02           30521.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.863356<br>WARN<br>769500<br>286.15<br>100000<br>285.5879<br>1<br>100000<br>285.5879<br>1<br>53.25518<br>3.10E-03<br>5.325518<br>3.10E-03<br>5.67E-05<br>1<br>2<br>2.55E-02<br>2                                     | WARN<br>1012500<br>286.45<br>1<br>102500<br>285.6882<br>1<br>62.07802<br>1.20E-02<br>231.3409<br>0.690474<br>62.07802<br>3.97E-05<br>1<br>2<br>9.73E-02 | WARN<br>1022625<br>286.65<br>1<br>100000<br>285.8753<br>1.20E-02<br>230.7823<br>0.686789<br>62.52898<br>4.06E-05<br>1<br>2.0098936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,464976<br>WARN<br>1012500<br>294.7.<br>1<br>90888<br>90888<br>294.4025<br>1.62.16053<br>62.16053<br>62.16053<br>1.08E-04<br>1<br>1.08E-04<br>1<br>2<br>0.768146                                                   | 1.505258<br><b>WARN</b><br>1115775<br>293.3<br>1115775<br>293.9<br>909900<br>292.9758<br>65.41988<br>7.32E-02<br>237.6186<br>0.810237<br>65.41988<br>9.78E-05<br>1<br>2<br>0.885142                               | 1.294841<br>WARN<br>1137038<br>295.3<br>1137038<br>295.3<br>11<br>90586<br>294.9598<br>1<br>66.28532<br>7.32E-02<br>9.67E-05<br>1<br>2<br>0.90201<br>1<br>2<br>0.90201                  | 1.780888<br>WARN<br>1178550<br>297.3<br>1<br>90280<br>296.9364<br>1<br>1<br>67.78113<br>7.32E-02<br>237.4653<br>0.795301<br>67.78113<br>9.29E-05<br>1<br>2<br>0.917972<br>2<br>0.917972         | 27.67<br>1.111402<br>OK<br>867342<br>313.15<br>1<br>1<br>101325<br>312.8714<br>1<br>101325<br>3.25E-02<br>292.7764<br>0.857297<br>41.13356<br>3.60E-04<br>2<br>0.220967                                   | 10.46<br>1.001237<br>OK<br>894699.8<br>310.95<br>11<br>101225<br>310.6659<br>1<br>101225<br>292.7764<br>0.873391<br>41.73085<br>1.87E-02<br>292.7764<br>0.873391<br>41.73085<br>1.87E-02<br>292.7764<br>0.873391<br>41.73085<br>292.7764<br>0.873391<br>41.73085<br>292.7764<br>0.873391<br>41.73085<br>292.7764<br>0.873391<br>41.73085<br>292.7764<br>0.873391<br>41.73085<br>292.7764<br>0.873391<br>41.73085<br>292.7764<br>0.873391<br>41.73085<br>292.7764<br>0.873391<br>41.73085<br>292.7764<br>0.873391<br>41.73085<br>292.7764<br>0.873391<br>41.73085<br>202.7764<br>0.873391<br>41.73085<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>202.7764<br>0.873391<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.0222<br>0.02220<br>0.02220<br>0.022200000000 | 10.27<br>1.025875<br>OK<br>907872<br>312.55<br>312.2579<br>1<br>101325<br>312.2579<br>1<br>101325<br>312.2579<br>1<br>292.7764<br>0.861785<br>42.17135<br>1.87E-02<br>292.7764<br>0.861785<br>42.17135<br>3.54E-04<br>2<br>20.125752<br>2<br>0.125752   | Observed flow rate: from Hanna for DT/GF, from SMEDIS for FLADIS,EEC<br>for FLADIS metastable better results; for EEC, DT flashing better; GF almost same |
| ERROR STATUS  Release state  Pressure  Temperature Liquid fraction (MASS basis)  Orffice state Pressure  Temperature Liquid fraction (MASS basis) Velocity Vena contracta diameter Final (post-expansion) state Temperature Liquid fraction (MASS basis) Velocity Velocity  ATEX outputs Droplet diameter Isashing or mechanical (1 = mechanical, 2 = flash, 3 = transition) ATEX expansion method (1 = isentropic, 2 = cons momentum) Expanded diameter Partial expansion energy Other data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Predict<br>Pa<br>Kg/kg/kg<br>Pa<br>kg/kg/kg<br>Pa<br>kg/kg<br>M/S<br>M/S<br>Kg/kg<br>m/s<br>m/s<br>m/s<br>m/s<br>m/s<br>m/s<br>m/s<br>m/s<br>m/s<br>m/s | 1,426133<br>WARN<br>693000<br>286.7446<br>1<br>102000<br>286.5729<br>1.00E+00<br>49.27421<br>4.88E-03<br>0.840029<br>49.27421<br>1.44E-04<br>1<br>1.44E-04<br>1<br>2<br>5.18E-02<br>-9.55E+02 | 0.920825<br>WARN<br>798000<br>290.25<br>10<br>102000<br>290.0382<br>290.0382<br>3.10E-03<br>3.10E-03<br>3.10E-03<br>3.10E-03<br>1.22E-04<br>1<br>1.22E-04<br>1<br>2<br>3.40E-02<br>-1069.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,111064<br>WARN<br>570000<br>281.0403<br>101300<br>280.9133<br>11<br>43.57772<br>43.57772<br>43.57772<br>43.57772<br>43.57772<br>43.57772<br>1.87E-04<br>1.87E-04<br>1<br>1.87E-04<br>1<br>2<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7426<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.74776<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.239.7476<br>2.249.7476<br>2.249.7476<br>2.249.7476<br>2.249.7476<br>2.249.7476<br>2.249.7476<br>2.249.7476<br>2.249.7476<br>2.249.7476<br>2.249.7476<br>2.249.7476<br>2.249.7476<br>2.249.7476<br>2.249.7476<br>2.249.7476<br>2.249.7476<br>2.249.7476<br>2.249.7476<br>2.249.74776<br>2.249.747676<br>2.249.74777776<br>2.249.7476                                                                                                                                                                                                                                                                                             | 1.19118           WARN           940000           2.940000           2.24.05           1.00000           2.83.3719           2.59.3913           1.200-02           2.30.7823           0.702604           2.9.3913           1.200-02           2.30.7823           0.702604           2.9.3913           1.4.54E-05           1           2           2           9.68E-02           3           -521.6           0.68                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.863356<br>WARN<br>769500<br>286.15<br>100000<br>285.5879<br>1<br>100000<br>285.5879<br>1<br>3.10E-03<br>53.25518<br>3.10E-03<br>230.7823<br>0.688616<br>53.25518<br>5.67E-05<br>1<br>2<br>2.55E-02<br>2<br>-1014.24 | WARN<br>1012500<br>286.45<br>1<br>102500<br>285.6882<br>231.3409<br>0.690474<br>62.07802<br>3.97E-05<br>1<br>2<br>9.73E-02<br>-555.684<br>0.66          | WARN 1022625 286.65 1 102000 285.8753 1 0 200.7823 0.686789 62.52898 20.7823 0.686789 62.52898 20.7823 0.686789 55.6245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,464976<br>WARN<br>1012500<br>294.7.<br>1<br>90888<br>294.4025<br>1<br>62.16053<br>6.27E-02<br>0.804972<br>62.16053<br>1.08E-04<br>1<br>1.08E-04<br>1<br>237.5987<br>1.08E-04<br>1<br>0.768146<br>-1139.79<br>0.68 | 1.505258<br>WARN<br>1115775<br>293.3<br>1<br>90990<br>292.9758<br>1<br>65.41988<br>7.32E-02<br>237.6186<br>0.810237<br>65.41988<br>9.78E-05<br>1<br>2<br>0.865142<br>-838.102                                     | 1.294841<br>WARN<br>1137038<br>295.3<br>1<br>90586<br>294.9598<br>1<br>66.28532<br>7.32E-02<br>237.5315<br>0.802746<br>66.28532<br>9.67E-05<br>1<br>2.0.90201<br>2.0.90201<br>3.0.90201 | 1.780888<br>WARN<br>1178550<br>297.3<br>1<br>90280<br>296.9364<br>1<br>67.78113<br>7.32E-02<br>237.4653<br>0.795301<br>6.7.78113<br>9.29E-05<br>1<br>9.29E-05<br>1<br>2<br>0.917972<br>-1125.03 | 27.67<br>1.111402<br>OK<br>867342<br>313.15<br>101325<br>312.8714<br>1<br>101325<br>3.25E-02<br>292.7764<br>0.857297<br>41.13356<br>3.60E-04<br>2<br>0.220967<br>629.7134<br>0.6                          | 10.46<br>1.001237<br>OK<br>894699.8<br>310.95<br>101325<br>310.659<br>11<br>101325<br>1.87E-02<br>292.7764<br>0.873391<br>41.73085<br>1.87E-02<br>292.7764<br>0.873391<br>41.73085<br>1.87E-02<br>20.120745<br>685.458<br>0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.27<br>1.025875<br>OK<br>907872<br>312.55<br>312.2579<br>1<br>101325<br>312.2579<br>1<br>101325<br>312.2579<br>1<br>202.7764<br>0.861785<br>42.17135<br>1.87E-02<br>292.7764<br>0.861785<br>42.17135<br>3.54E-04<br>2<br>20.125752<br>681.7128<br>0.6 | Observed flow rate: from Hanna for DT/GF, from SMEDIS for FLADIS,EEC<br>for FLADIS metastable better results; for EEC, DT flashing better; GF almost same |

Table 2. DISC input spreadsheet for large-scale flashing experiments (FLADIS, EEC, DT, GF) – metastable liquid assumption



|                                              | FLAD 9 | FLAD 16 | FLAD 24 | EEC170 <sup>xviiv</sup> ii | EEC360 | EEC550 | EEC560 | DT1   | DT2   | DT3   | DT4   | GF1   | GF2   | GF3   |
|----------------------------------------------|--------|---------|---------|----------------------------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|
| FLOW RATE                                    |        |         |         |                            |        |        |        |       |       |       |       |       |       |       |
| Observed, kg/s                               | 0.4    | 0.27    | 0.46    | 2.9                        | 0.11   | 3      | 3      | 79.7  | 111.5 | 130.7 | 96.7  | 27.67 | 10.46 | 10.27 |
| Predicted (metastable)                       | 0.57   | 0.25    | 0.51    | 3.45                       | 0.20   | 3.59   | 3.61   | 116.8 | 167.8 | 169.2 | 172.2 | 30.75 | 10.47 | 10.54 |
| Predicted (flashing)                         | 0.15   | 0.08    | 0.13    | 2.78                       | 0.11   | 2.89   | 2.92   | 63.0  | 116.1 | 110.9 | 108.2 | 30.69 | 10.46 | 10.52 |
| Pred./Obs. (metastable)                      | 1.43   | 0.92    | 1.11    | 1.19                       | 1.86   | 1.20   | 1.20   | 1.46  | 1.51  | 1.29  | 1.78  | 1.11  | 1.00  | 1.03  |
| Pred./Obs. (flashing)                        | 0.38   | 0.28    | 0.29    | 0.96                       | 0.99   | 0.96   | 0.97   | 0.79  | 1.04  | 0.85  | 1.12  | 1.11  | 1.00  | 1.02  |
| SMEDIS                                       |        |         |         |                            |        |        |        |       |       |       |       |       |       |       |
| Liquid Fraction                              | 0.84   | 0.83    | 0.83    | 0.72                       | 0.71   | 0.70   | 0.70   | 0.82  | 0.82  | -     | -     | -     | -     | -     |
| Velocity (m/s)                               | 65.17  | 67.85   | 55.87   | 85.21                      | 84.2   | 68.5   | 89.03  | 90.3  | 72.7  | -     | -     | -     | -     | -     |
| DISC (conservation of<br>momentum; metast.)  | 1      |         |         |                            |        |        |        |       |       |       |       |       |       |       |
| Liquid Fraction                              | 0.84   | 0.83    | 0.86    | 0.70                       | 0.69   | 0.69   | 0.69   | 0.80  | 0.81  | 0.80  | 0.80  | 0.86  | 0.87  | 0.86  |
| Velocity (m/s)                               | 49.3   | 53.7    | 43.6    | 59.4                       | 53.3   | 62.1   | 62.5   | 62.2  | 65.4  | 66.3  | 67.8  | 41.1  | 41.7  | 42.2  |
| SMD (µm)                                     | 144    | 122     | 187     | 45                         | 57     | 40     | 41     | 108   | 98    | 97    | 93    | 360   | 354   | 354   |
| DISC (conservation of<br>momentum; flashing) |        |         |         |                            |        |        |        |       |       |       |       |       |       |       |
| Liquid Fraction                              | 0.84   | 0.83    | 0.86    | 0.70                       | 0.69   | 0.69   | 0.69   | 0.81  | 0.81  | 0.80  | 0.80  | 0.86  | 0.87  | 0.86  |
| Velocity (m/s)                               | 122.7  | 119.4   | 113.1   | 65.6                       | 82.2   | 68.3   | 68.7   | 82.2  | 71.1  | 75.0  | 79.2  | 41.3  | 41.8  | 42.3  |
| SMD (µm)                                     | 23     | 25      | 28      | 325                        | 268    | 319    | 318    | 275   | 316   | 304   | 293   | 348   | 344   | 343   |
| Phast (Isentropic; metastable)               | T      |         |         |                            |        |        |        |       |       |       |       |       |       |       |
| Liquid Fraction                              | 0.85   | 0.84    | 0.87    | 0.73                       | 0.72   | 0.72   | 0.72   | 0.82  | 0.83  | 0.82  | 0.82  | 0.86  | 0.88  | 0.87  |
| Velocity (m/s)                               | 201.8  | 216.9   | 178.1   | 172.0                      | 176.5  | 178.0  | 180.4  | 246.0 | 241.0 | 249.5 | 258.1 | 70.7  | 66.0  | 69.9  |
| SMD (µm)                                     | 113    | 102     | 131     | 141                        | 137    | 136    | 134    | 84    | 87    | 82    | 77    | 265   | 275   | 267   |

Table 3. Large-scale flashing experiments: flow rate predictions, SMEDIS versus Phast 7.1 post-expansion predictions

vii Previously SMD was presumed 40 micrometer, but now it has been calculated as 45 micro meter. Given the small difference, the original value of 40 micro meter has been obtained.



### 4.1.2 Dispersion

The results of the statistical comparison of the UDM predictions with the centre-line concentration measurements for the continuous experiments are presented in Table 4. The following observations may be made:

- For the neutrally buoyant, Prairie Grass experiments, the UDM performance is satisfactory. The UDM significantly over-predicts the measured centre-line concentration in the case of run 7.
- The UDM predictions of the measured centre-line concentrations in the Desert Tortoise experiments are very good.
- The performance of the UDM against the EEC experiments is reasonable.
- The UDM performance is good for the centre line concentration predictions in the FLADIS experiments, with a slight over-prediction observed in general.
- The UDM under-predicts the centre-line concentrations for the Goldfish experiments. A closer investigation
  indicates that agreement between predicted and experimental results is good prior to the transition to passive
  dispersion. Downwind of the transition the under-prediction increases due to the larger passive spread rate<sup>viii</sup>.
  Furthermore, the under-prediction of the centre-line concentrations and over-prediction of the cloud width may
  be related to the absence of a gravity collapse criterion in the UDM.
- The UDM under-predicts the centre-line concentrations for the Maplin Sands LPG experiments. It is noted that while the Phast defaults are used here, the results are sensitive to the particular choice of parameters<sup>ix</sup>

The statistical comparison of the UDM cloud width predictions with the experimental data are also presented in Table 4. The following conclusions may be drawn:

- The performance of the UDM against the neutrally buoyant Prairie Grass experiments is good.
- The performance of the UDM against the aerosol releases of Desert Tortoise, EEC and FLADIS, in which both heavy and jet entrainment dominates, is reasonable.

Viii All the validation cases were rerun with the Richardson Number transition criterion temporarily set to a lower value of 2.5. The Goldfish series of experiments were the only cases that were seriously affected, giving better comparison against experimental data. However, it was noted that the distance to passive transition increased dramatically, possibly leading to a large under-prediction of averaging time effects. With this observation in mind the Richardson number transition criterion was left at the current value of 15.

<sup>&</sup>lt;sup>IX</sup> In particular the choice of number of pool observers. The default of 10 is used here but increasing this number improves agreement with observed concentrations.



| Experiment                   | Arcwie | se conc | Arcwis    | e width | Point | twise conc |
|------------------------------|--------|---------|-----------|---------|-------|------------|
| / Group ID                   | MG     | VG      | MG        | VG      | MG    | VG         |
| Desert Tortoise <sup>x</sup> |        |         |           |         |       |            |
| DT01                         | 1.08   | 1.38    | 1.17      | 1.05    | 0.66  | 5.79       |
| DT02                         | 1.15   | 1.10    | 0.98      | 1.00    | 1.01  | 21.66      |
| DT03                         | 0.83   | 1.05    | 1.09      | 1.06    | 0.00  | 0.00       |
| DT04                         | 0.96   | 1.23    | 1.00      | 1.01    | 0.00  | 0.00       |
| All                          | 1.00   | 1.18    |           |         | 0.84  | 11.91      |
| EEC                          |        |         |           |         |       |            |
| EEC170                       | 0.00   | 0.00    | 0.00      | 0.00    | 2.96  | 10.22      |
| EEC560                       | 1.30   | 1.07    | 1.83      | 1.48    | 5.33  | 3233.16    |
| TUNEC360                     | 1.82   | 1.48    | 1.48      | 1.20    | 2.28  | 150.94     |
| TUNEC550                     | 1.16   | 1.04    | 1.47      | 1.19    | 3.65  | 385.08     |
| All                          | 1.37   | 1.16    | 1.60      | 1.29    | 3.38  | 165.98     |
| FLADIS                       |        |         |           |         |       |            |
| FLADIS09                     | 0.73   | 1.64    | 1.77      | 1.46    | 2.48  | 24.17      |
| FLADIS16                     | 0.62   | 1.76    | 1.26      | 1.08    | 1.72  | 12.22      |
| FLADIS24                     | 1.04   | 1.69    | 1.21      | 1.14    | 2.69  | 25.34      |
| All                          | 0.78   | 1.69    | 1.39      | 1.17    | 2.29  | 20.03      |
| Goldfish                     |        |         |           |         |       |            |
| GF01                         | 0.73   | 1.27    | 0.69      | 1.20    | 0.00  | 0.00       |
| GF02                         | 0.77   | 1.36    | 0.76      | 1.08    | 0.00  | 0.00       |
| GF03                         | 1.11   | 1.10    | 0.86      | 1.10    | 0.00  | 0.00       |
| All                          | 0.87   | 1.22    | 0.77      | 1.13    | -     | -          |
| Prairie Grass <sup>x</sup>   |        |         |           |         |       |            |
| PG07                         | 0.27   | 8.28    | 0.62      | 1.26    | 0.00  | 0.00       |
| PG08                         | 0.88   | 1.26    | 1.0       | 1.01    | 1.19  | 15.96      |
| PG09                         | 0.70   | 1.24    | 1.45      | 1.15    | 0.00  | 0.00       |
| PG13                         | 1.17   | 1.32    | 0.00      | 0.00    | 0.00  | 0.00       |
| PG15                         | 2.20   | 2.15    | 0.57      | 1.39    | 0.00  | 0.00       |
| PG17                         | 1.84   | 1.57    | 0.64      | 1.33    | 0.45  | 15.44      |
| PG34                         | 0.64   | 1.22    | 0.00      | 0.00    | 0.00  | 0.00       |
| PG41                         | 1.41   | 1.30    | 0.00      | 0.00    | 0.00  | 0.00       |
| PG50                         | 0.76   | 1.23    | 1.29      | 1.07    | 0.00  | 0.00       |
| PG58                         | 1.48   | 1.27    | 0.00      | 0.00    | 0.00  | 0.00       |
| All                          | 0.95   | 1.69    |           |         | 0.89  | 15.80      |
|                              |        | -       | Sands LPG |         |       |            |
| MSP42                        | 2.34   | 2.68    | 0.00      | 0.00    | 0.00  | 0.00       |
| MSP43                        | 2.10   | 1.77    | 0.00      | 0.00    | 0.00  | 0.00       |
| MSP46                        | 2.12   | 1.89    | 0.00      | 0.00    | 0.00  | 0.00       |
| MSP47                        | 1.23   | 1.13    | 0.00      | 0.00    | 0.00  | 0.00       |
| MSP49                        | 2.64   | 2.60    | 0.00      | 0.00    | 0.00  | 0.00       |
| MSP50                        | 1.67   | 1.37    | 0.00      | 0.00    | 0.00  | 0.00       |
| MSP52                        | 1.08   | 1.33    | 0.00      | 0.00    | 0.00  | 0.00       |
| MSP54                        | 2.62   | 2.65    | 0.00      | 0.00    | 0.00  | 0.00       |
| All                          | 1.87   | 1.83    | -         | -       | -     | -          |
|                              |        |         |           |         |       |            |

Table 4: MG and VG values for centre-line concentrations and widths (continuous)

 $<sup>^{\</sup>rm X}$  No summary width given – mixture of Hann and SMEDIS methods





### 4.2 Continuous releases (angled & vertical)

In this section we are specifically concerned with continuous releases (typically vertical or angled) into a crosswind. There are a number of experimental studies to validate against here, although given the nature of the geometry these are usually wind tunnel studies of heavy gas releases, with the Engie experiments being the only field-scale cases considered. We have introduced this validation set from Phast 8.6 to coincide with the "Morton extended" model being introduced as default. This model addresses observations that for previous releases of Phast there has been a systematic tendency to underestimate near-field dispersion distances for vertical releases.

In most of these experiments, arrays of sensor locations are arranged vertically at fixed downwind locations on the centre line, and the concentration distribution along the vertical array reported. An example is shown in Figure 1. At each downwind observation location we can use the maximum concentration and the height at which this concentration was observed for comparison with calculations<sup>xi</sup>.

The validation set comprises 17 individual experiments:

- Schatzmann et al<sup>17</sup>. : 4 wind-tunnel experiments, all vertical.
- Donat<sup>18</sup>: 9 wind-tunnel experiments, 6 vertical, 1 angled, 2 horizontal.
- Vidali et al.<sup>19</sup>: 1 vertical wind-tunnel experiment.
- Quillatre<sup>20</sup> (Engie): 3 field experiments, 2 vertical, 1 horizontal

All wind-tunnel cases have been simulated at field-scale rather than wind-tunnel scale, and the appropriate input data are presented in Table 5



Figure 1: Concentration reporting in crosswind experiments (from Schatzmann et al)

Xi This way we can separate out trajectory and entrainment comparisons. If we were to use concentrations at specific (sensor) points, a poor estimate of height would inevitably lead to a low concentration prediction.



|                                | S4    | S10   | S11   | S13   | D1    | D3    | D4    | D5    | D10   | D11   | D19   | D21   | D44   | V1    | ENH6   | ENV6  | ENV18 |
|--------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|
| Release angle                  | 90    | 90    | 90    | 90    | 90    | 90    | 90    | 90    | 45    | 90    | 0     | 90    | 0     | 90    | 0      | 90    | 90    |
| Release rate, kg/s             | 23.9  | 57.9  | 57.9  | 212.3 | 21.7  | 31.9  | 31.9  | 116.9 | 45.4  | 29.3  | 34.1  | 31.8  | 52.5  | 43.6  | 0.57   | 0.43  | 1.02  |
| Density [at release] (kg/m3)   | 2.0   | 2.77  | 2.77  | 5.88  | 1.88  | 2.77  | 2.77  | 5.88  | 2.77  | 2.77  | 2.77  | 2.77  | 2.77  | 1.83  | 1.38   | 1.38  | 1.38  |
| Release temperature (°C)       | 19.5  | 19.5  | 19.5  | 19.5  | 19.85 | 19.85 | 19.85 | 19.85 | 19.85 | 19.85 | 19.85 | 19.85 | 19.85 | 20    | -122.2 | 122.2 | 122.2 |
| Ambient temperature (°C)       | 19.5  | 19.5  | 19.5  | 19.5  | 19.85 | 19.85 | 19.85 | 19.85 | 19.85 | 19.85 | 19.85 | 19.85 | 19.85 | 20    | 20     | 20    | 20    |
| Vent diameter (m)              | 0.159 | 1.27  | 1.27  | 1.27  | 0.58  | 1.00  | 1.00  | 1.00  | 0.80  | 0.80  | 0.30  | 0.30  | 0.58  | 1.2   | 0.152  | 0.152 | 0.457 |
| Vent elevation (m)             | 5.0   | 8.5   | 8.5   | 8.5   | 6.96  | 6.70  | 6.70  | 6.70  | 12.00 | 12.00 | 9.00  | 9.00  | 8.70  | 7.2   | 5.65   | 4.65  | 4.45  |
| Wind speed at ref height (m/s) | 20.70 | 6.66  | 13.39 | 11.49 | 8.91  | 12.32 | 12.92 | 10.62 | 15.68 | 10.14 | 12.04 | 11.23 | 18.34 | 8.81  | 1.38   | 2.17  | 4.73  |
| Reference height (m)           | 10    | 10    | 10    | 10    | 10    | 10    | 10    | 10    | 10    | 10    | 10    | 10    | 10    | 10    | 5.7    | 5.7   | 4.15  |
| Stability class                | D     | D     | D     | D     | D     | D     | D     | D     | D     | D     | D     | D     | D     | D     | D      | D     | D     |
| Surface roughness (m)          | 0.037 | 0.037 | 0.037 | 0.037 | 0.008 | 0.008 | 0.190 | 0.008 | 0.070 | 0.070 | 0.070 | 0.070 | 0.008 | 0.011 | 0.010  | 0.010 | 0.010 |

Table 5. Phast input data for the crosswind calculations (Schatzmann, Donat, Vidali and Engie)



Calculated MG and VG for the predicted centreline concentration at the downwind observation points are presented in Table 6 and plotted in Figure 2 where the different experiments are plotted as separate series. These use the new 'Morton extended' model.

We see particularly from Figure 2 that the data points are scattered evenly around MG=1, demonstrating that the new default model does not present any observable bias to overpredict or underpredict these experiments. Most cases sit in a narrow band around MG=1 and well within the 'factor of 2' range.

The extent of the of improvement in comparison with Phast 8.4 is shown in Figure 3, where the Phast 8.4 points can be seen to underpredict across all experiments. The extension of this model to include high velocity vertical releases is expected in future work.

| Experiment    | Arcwise conc  |      |
|---------------|---------------|------|
| / Group ID    | MG            | VG   |
| Continuous cr | osswind cases |      |
| SC10S         | 1.16          | 1.12 |
| SC11S         | 0.75          | 1.18 |
| SC13S         | 1.37          | 1.26 |
| SC4S          | 1.60          | 1.34 |
| D10s          | 0.89          | 1.03 |
| D11s          | 0.98          | 1.00 |
| D19s          | 1.38          | 1.14 |
| D1s           | 1.08          | 1.03 |
| D21s          | 1.27          | 1.08 |
| D3s           | 0.68          | 1.20 |
| D44s          | 1.37          | 1.14 |
| D4s           | 0.80          | 1.07 |
| D5s           | 0.97          | 1.06 |
| V1            | 1.21          | 1.08 |
| ENGH6         | 1.24          | 1.28 |
| ENGV18        | 0.56          | 1.44 |
| ENGV6         | 1.39          | 1.12 |
| Schatzmann    | 1.16          | 1.23 |
| Donat         | 1.02          | 1.08 |
| Vidali        | 1.21          | 1.08 |
| Engie         | 1.05          | 1.27 |
| All           | 1.07          | 1.06 |

Table 6. MG and VG values for the maximum plume centreline concentration





Figure 2: MG and VG plots for the plume centreline concentration



Figure 3: MG and VG plots for the plume centreline concentration (8.6 vs 8.4)



### 4.3 Instantaneous dispersion

Table 4 includes the results of the statistical comparison of the UDM predictions of the centreline concentration with the measured experimental data. As can be seen the performance is somewhat variable with an overall trend towards over-predicting the experimental data. Predictions for runs 7, 9 and 12, which are at relatively low wind speeds, are less accurate.

| Experiment            | Arcwise conc |      |  |  |  |  |  |  |  |
|-----------------------|--------------|------|--|--|--|--|--|--|--|
| / Group ID            | MG           | VG   |  |  |  |  |  |  |  |
| Thorney Island (inst) |              |      |  |  |  |  |  |  |  |
| TI06                  | 1.07         | 1.10 |  |  |  |  |  |  |  |
| TI07                  | 1.37         | 1.30 |  |  |  |  |  |  |  |
| TI08                  | 0.88         | 1.18 |  |  |  |  |  |  |  |
| TI09                  | 1.53         | 1.33 |  |  |  |  |  |  |  |
| TI12                  | 1.41         | 1.41 |  |  |  |  |  |  |  |
| TI13                  | 0.85         | 1.10 |  |  |  |  |  |  |  |
| TI17                  | 0.53         | 1.78 |  |  |  |  |  |  |  |
| TI18                  | 0.53         | 1.61 |  |  |  |  |  |  |  |
| TI19                  | 0.64         | 1.29 |  |  |  |  |  |  |  |
| All                   | 0.87         | 1.35 |  |  |  |  |  |  |  |

Table 7. MG and VG values for centre-line concentrations (instantaneous),



### 4.4 Pressurised CO2 releases (BP and Shell experiments)

Figure 4 depicts the Phast modelling of discharge and dispersion for an elevated two-phase pressurised release. The discharge modelling includes the expansion from orifice (pipe exit) conditions to atmospheric pressure during which liquid to solid/vapour expansion occurs. In case of initial supercritical temperature (above  $31^{\circ}$ C), vapour to vapour, or vapour to two-phase solid-vapour expansion occurs. The applied Phast discharge models are DISC (steady-state releases) and TVDI (time-varying releases) and they predict the post-expansion conditions subsequently used as the source term (starting condition) for the UDM dispersion model. The discharge and dispersion modelling allows for the presence of solid CO<sub>2</sub> downstream of the orifice/pipe exit.



Figure 4. Discharge modelling (DISC/TVDI) and dispersion modelling (UDM)

### 4.4.1 Phast discharge model predictions

For the Shell experiments, the flow rate and density were measured accurately using a coriolis flow meter. In addition for both the Shell and BP experiments, the vessel weight was measured using load cells. Thus for the BP supercritical vapour releases, the flow rate was derived from the measured vessel weight using load cells. For the BP cold steady-state liquid releases, the flow rate was estimated by Advantica (Evans and Graham, 2007)<sup>21</sup> from the load cells by assuming that the total flow rate (kg/s; derived from vessel mass as measured by the load cells) equals dM/dt = pCO2VCO2 - pN2VN2. Here pCO2 is the CO2 density (kg/m3), VCO2 the CO2 volume rate (m3/s), pN2 the nitrogen density (kg/m3), and VN2 the nitrogen volume flow rate (m3/s). Pressure and temperature were measured at a range of locations upstream of the vessel, inside the vessel, and downstream of the vessel along the pipe and the release valve.

The Phast discharge models either assume the release to be directly from an orifice from a vessel ('Leak' scenario), or from a short pipe attached to a vessel (with orifice diameter = pipe diameter, i.e. full-bore rupture). Except for the 1" orifice tests (BP test 5 and Shell tests 2,5), the observed pressure at the discharge end was seen to be very close to the observed pressure at the vessel inlet and vessel outlet. Thus the Phast 'Leak' scenario was applied, while neglecting the pressure loss from the stagnation conditions to the nozzle conditions. Also the 1" orifice tests can be modelled using the 'Leak' scenario, provided that measured nozzle pressure/temperature are specified as model input instead of storage pressure/temperature (at vessel outlet).

The Phast discharge model DISC was used to simulate the steady-state liquid releases, while the Phast discharge model TVDI was used to model the time-varying releases. Default Phast parameters were applied with two exceptions. First the metastable assumption (non-equilibrium with liquid 'frozen') was not applied, but flashing was allowed at the orifice (equilibrium at the orifice) to account for the pipework upstream of the orifice. Secondly, conservation of momentum was applied for the expansion from orifice to post-expansion conditions, since this assumption was previously found to provide source terms giving the most accurate concentration predictions by the subsequent UDM dispersion model [e.g. against the SMEDIS experiments; 4.1.1 for details].

#### 4.4.1.1 Time-varying releases

Table 8 shows that the measured initial CO2 density derived from the coriolis flow meter for the time-varying Shell tests is very close to values predicted by the Span-Wagner (SW) equation of state in line with recommendations of a report by EON (2011). Also accurate predictions are obtained of the liquid density in Phast using the (non-default)



Peng-Robinson (PR) equation of state (EOS). The default method in Phast presumes the liquid density equal to the saturated liquid density at the given temperature, i.e. independent of the pressure. This was shown to result in accurate predictions of the liquid density after depressurisation to saturated conditions, but to lead to a significant under-prediction of the initial liquid density (i.e. total initial vessel mass).

Table 8 also demonstrates that improved predictions are obtained of the initial vapour density for the hot tests 14 and 16 using the PR equation of state.

| Input                                    | Test1  | Test2  | Test4  | Test14 | Test16 | Comments                                        |
|------------------------------------------|--------|--------|--------|--------|--------|-------------------------------------------------|
| storage phase                            | liquid | liquid | Liquid | vapour | vapour |                                                 |
| storage pressure (bara)                  | 149.3  | 148.1  | 149.2  | 152.6  | 151.6  | = gauge + ambient pressure                      |
| storage temperature (°C)                 | 26.7   | 24.6   | 20.1   | 71     | 36.7   |                                                 |
| Predicted and measured density           |        |        |        |        |        |                                                 |
| Phast default density (kg/m3)            | 686    | 719    | 773    | 445    | 704    | Phast (default method)                          |
| Phast PR density                         | 854    | 868    | 901    | 476    | 779    | Phast (modified method)                         |
| Span-Wagner density (kg/m <sup>3</sup> ) | 866    | 878    | 903    | 507    | 803    | derived via interpolation of data in EON report |
| measured density (kg/m3)                 | 890    | 919    | 907    | 493    | 826    | measured by Coriolis flow meter                 |

#### Table 8. Predicted versus observed initial CO<sub>2</sub> density for time-varying Shell tests

Figure 5 includes TVDI-predicted (default Phast density) and observed values for flow rate (kg/s) versus time (s) for the time-varying releases. The thick solid lines represent the experimental data. The other lines represent TVDI predictions, while allowing flashing at the orifice.

For the liquid releases, Figure 5a includes TVDI predictions using both the default EOS and (using a new more robust development version of TVDI) the PR EOS. The default EOS predicts both the initial flow rate and the flow rate after depressurisation to saturated conditions quite accurately. However less accurate results are obtained during the regime of depressurisation to saturated, with a too rapid decrease of flow rate caused by the usage of the too low saturated liquid CO2 density. The PR EOS using a more accurate CO2 density provides more accurate predictions of the flow rate for all regimes.

#### For the hot vapour releases,

Figure 5b includes predictions of the current TVDI model (version 6.7) using both the default EOS and the PR EOS. For the BP tests, the observed values for the flow rates are averaged over a period over 8 seconds to reduce oscillations caused by inaccuracies of the load-cell measurements. This was not necessary for the coriolis flow meter measurements. The following can be concluded from Figure 5b:

- For the very hot BP tests 8, 8R (storage temperature about 150oC), the vapour remains vapour within the vessel upon depressurisation (condensation not relevant), and it is seen that very close agreement is obtained between TVDI predictions and observed data using both the default and PR EOS, since they both provide very accurate predictions of CO2 vapour density.
- For the BP test 9 and the Shell test 14 (temperature about 70oC), PR EOS is seen to produce most accurate results. Furthermore the default-EOS TVDI runs are seen to terminate prematurely, which was due to convergence problems apparently caused by the release temperature being lower and closer to the critical temperature. An under-prediction of the flow rate is seen at larger times.
- For Shell test 16 the above effects are seen to be even more pronounced, since the initial storage temperature is only a few degrees above the critical temperature. At larger times the vessel fluid may become liquid, but the transition from vapour to liquid is not modelled by TVDI resulting in under-prediction.





Figure 5. TVDI validation of flow rate for time-varying CO2 releases (BP&Shell tests)



#### 4.4.1.2 Initial rate for steady-state and time-varying releases

#### BP tests

Table **29** summarises the overall results of the discharge rates for all BP tests. For the steady-state tests only the DISC initial release rate is given, while for the time-varying releases also the TVDI-predicted averaged release rate over the first 20 seconds is indicated. It is noted that the difference between the averaged and initial rate is relatively small. From the table it is seen that the time-varying Phast predictions align well with the observed discharge rate for the hot tests 8, 8R and 9. The predicted flow rate for the cold releases, with the exception of test 5 (1" release), is also very close to that of the experiments.

|                                                                                      | Test1 | Test 2 | Test3  | Test 5 | Test6 | Test 11 | Test 8 | Test 8R | Test 9 |
|--------------------------------------------------------------------------------------|-------|--------|--------|--------|-------|---------|--------|---------|--------|
| Discharge rate                                                                       |       |        |        |        |       |         |        |         |        |
| DISC initial discharge rate (kg/s)                                                   | 8.84  | 10.98  | 9.988  | 50.75  | 3.21  | 7.03    | 4.19   | 3.90    | 6.86   |
| DISC/TVDI discharge rate (kg/s) (averaged over<br>first 20 seconds for tests 8,8R,9) | 8.84  | 10.98  | 9.988  | 50.75  | 3.21  | 7.03    | 4.01   | 3.73    | 6.25   |
| Observed discharge rate (kg/s) (averaged over<br>first 20 seconds for tests 8,8R,9)  | 8.2   | 11.41  | 9.972  | 41.17  | 3.50  | 7.12    | 4.07   | 3.80    | 6.05   |
| Deviation predicted from observed                                                    | 7.8%  | -3.9%  | 0.16%  | +23%   | -8.2% | -1.1%   | -1.5%  | -1.8%   | +3.4%  |
| Final (post-expansion) state (UDM input)                                             |       |        |        |        |       |         |        |         |        |
| Discharge rate (kg/s) (from experiments)                                             | 8.2   | 11.41  | 9.988  | 41.17  | 3.50  | 7.12    | 4.07   | 3.80    | 6.05   |
| Temperature (K) (DISC output)                                                        | 194.6 | 194.1  | 194.26 | 194.4  | 193.8 | 194.1   | 198.2  | 204.8   | 194.1  |
| Solid fraction (-) (DISC output)                                                     | 0.397 | 0.403  | 0.384  | 0.399  | 0.397 | 0.330   | 0      | 0       | 0.154  |
| Velocity (m/s) (DISC output)                                                         | 156.7 | 189.8  | 179.2  | 191.7  | 191.3 | 154.2   | 466.5  | 472.8   | 289.0  |

#### Table 9. Predicted versus observed flow rates; UDM source-term data (BP CO<sub>2</sub> tests)

For test 5 (1" release) the flow rate is over-predicted with 23% (50.74 kg/s predicted versus 41.17 kg/s experimental) using the 'Leak' scenario, while using the pipe ('Line Rupture') scenario it is under-predicted with 34.5% (26.95 kg/s predicted versus 41.17 kg/s). The over-prediction for the orifice scenario is believed to be caused by the fact that pressure loss is ignored along the pipework (hose/spool/nozzle). Test 5 has the largest orifice diameter (1") and therefore will be most susceptible to upstream pressure loss and reduced flow rate. Indeed if a more accurate pressure would be applied of 128.6 barg (corresponding to averaged observed pressure close to the orifice) a release rate of 45.34 kg/s is predicted using the 'Leak' scenario corresponding to a much smaller over-prediction of 10.1%.

As indicated above the flow rate changes little for the time-varying tests 8, 8R, 9 within the first 20 seconds, and it is believed that within 20 seconds the maximum concentrations will be achieved within the first 80 meter (given relatively large initial jet momentum and relatively large values of wind speed). Therefore in the next section the dispersion calculations are modelled as steady-state using the averaged flow rate over the first 20 seconds for tests 8, 8R and 9, while for the other tests the values observed over the duration is adopted; see Evans and Graham<sup>21</sup> on further details of the evaluation of the observed flow rate. All other UDM input data (temperature, solid fraction, velocity) are chosen as predicted above by the discharge model DISC.

#### Shell tests

Table **10** summarises the overall DISC predictions of the initial discharge rates for all Shell tests. In this table a range of model assumptions is applied:

- Time-varying releases are calculated either based on measured initial storage (vessel outlet) pressure/temperature or measured initial nozzle pressure/temperature; as expected, particularly for the largest 1" orifice size (test 2), usage of nozzle data significantly improves the predictions given the significant pressure decay between storage and nozzle conditions; for the smallest ¼" orifice size identical results are obtained because of negligible pressure decay.
- Phast liquid density either based on default (saturated density) or more accurate Peng Robinson density, with more accurate results obtained using the Peng-Robinson equation of state
- Flashing (non-default Phast) or non-flashing (default Phast; metastable liquid assumption). Using Peng-Robinson density, this is seen to affect results very little. Using the saturated density, the default nonflashing option provides conservative results while the non-default flashing assumption produces significantly more accurate results.



| prescribed<br>pressure/temperature | mean n              | ozzle  |                  | initial nozzle |        |                  |        |                  | initial storage (vessel discharge end) |        |               |        |        |
|------------------------------------|---------------------|--------|------------------|----------------|--------|------------------|--------|------------------|----------------------------------------|--------|---------------|--------|--------|
| release type                       | STEADY-STATE LIQUID |        | TRANSIENT LIQUID |                |        | TRANSIENT<br>HOT |        | TRANSIENT LIQUID |                                        |        | TRANSIENT HOT |        |        |
| Shell CO <sub>2</sub> test number  | Test 3              | Test5  | Test11           | Test1          | Test2  | Test4            | Test14 | Test16           | Test1                                  | Test2  | Test4         | Test14 | Test16 |
| Predicted flow rate (kg/s)         |                     |        |                  |                |        |                  |        |                  |                                        |        |               |        |        |
| - default density, flashing        | 11.93               | 43.38  | 8.89             | 11.23          | 40.90  | 2.85             | 7.82   | 10.92            | 11.29                                  | 45.36  | 2.85          | 7.33   | 10.87  |
| - default density , no flash.      | 13.58               | 50.88  | 10.21            | 13.61          | 49.48  | 3.39             | 7.46   | Error            | 13.95                                  | 55.30  | 3.39          | 7.22   | Error  |
| - PR density, flashing             | 12.37               | 44.36  | 9.10             | 11.38          | 41.26  | 2.92             | 7.67   | 10.88            | 11.40                                  | 45.94  | 2.92          | 7.45   | 10.74  |
| - PR density, no flashing          | 12.16               | 43.92  | 9.29             | 11.12          | 41.15  | 2.85             | 7.71   | Error            | 11.06                                  | 44.71  | 2.85          | 7.45   | Error  |
| Observed flow rate                 | 12.4                | 44.7   | 8.9              | 10.55          | 38     | 3.17             | 7.37   | 10.5             | 10.55                                  | 38     | 3.17          | 7.37   | 10.5   |
| Ratio predicted/observed           |                     |        |                  |                |        |                  |        |                  |                                        |        |               |        |        |
| - default density, flashing        | 96.2%               | 97.1%  | 99.9%            | 106.4%         | 107.6% | 90.0%            | 106.1% | 104.0%           | 107.0%                                 | 119.4% | 90.0%         | 99.5%  | 103.6% |
| - default density , no flash.      | 109.5%              | 113.8% | 114.7%           | 129.0%         | 130.2% | 106.9%           | 101.2% | Error            | 132.2%                                 | 145.5% | 106.9%        | 97.9%  | Error  |
| - PR density, flashing             | 99.8%               | 99.2%  | 102.2%           | 107.9%         | 108.6% | 92.0%            | 104.1% | 103.6%           | 108.0%                                 | 120.9% | 92.0%         | 101.1% | 102.3% |
| - PR density, no flashing          | 98.0%               | 98.3%  | 104.4%           | 105.4%         | 108.3% | 89.8%            | 104.7% | Error            | 104.8%                                 | 117.7% | 89.8%         | 101.1% | Error  |

#### Table 10. Predicted versus observed flow rates - vary Phast assumptions (Shell tests)

| prescribed pressure/temperature                         | mean noz | zle          |        | initial noz | zle              | initial stora | initial storage |               |  |
|---------------------------------------------------------|----------|--------------|--------|-------------|------------------|---------------|-----------------|---------------|--|
| release type                                            | STEADY-  | STATE LIQUIE | )      | TRANSIE     | TRANSIENT LIQUID |               |                 | TRANSIENT HOT |  |
| Shell CO <sub>2</sub> test number                       | Test 3   | Test5        | Test11 | Test1       | Test2            | Test4         | Test14          | Test16        |  |
| Discharge rate                                          |          |              |        |             |                  |               |                 |               |  |
| DISC initial discharge rate – PR,fl. (kg/s)             | 12.37    | 44.36        | 9.10   | 11.38       | 41.26            | 2.92          | 7.45            | 10.74         |  |
| Observed rate (kg/s) (initial rate for transient tests) | 12.4     | 44.7         | 8.9    | 10.55       | 38               | 3.17          | 7.37            | 10.5          |  |
| Deviation predicted from observed                       | -0.24%   | -0.77%       | 2.25%  | 7.86%       | 8.59%            | -8.03%        | 1.08%           | 2.26%         |  |
| Final (Post Expanded) State (UDM input)                 |          |              |        |             |                  |               |                 |               |  |
| Discharge rate (kg/s) (from experiments)                | 12.4     | 44.7         | 8.9    | 10.55       | 38               | 3.17          | 7.37            | 10.5          |  |
| Temperature (K) (DISC output)                           | 194.82   | 193.37       | 194.55 | 194.69      | 194.67           | 194.30        | 194.67          | 194.57        |  |
| Solid fraction (-) (DISC output)                        | 0.40     | 0.37         | 0.42   | 0.34        | 0.35             | 0.36          | 0.15            | 0.29          |  |
| Velocity (m/s) (DISC output)                            | 176.25   | 170.94       | 132.23 | 187.93      | 170.80           | 187.48        | 292.91          | 208.16        |  |

#### Table 11. Predicted versus observed flow rates and UDM source-term data (Shell tests)

Table 11 includes results and UDM source terms based on nozzle data, the Peng-Robinson Equation of state and the flashing assumption. Note that unlike the BP experiments, the UDM dispersion data are chosen to depend on the initial rate rather than on the averaged rate during the first 20 seconds. This choice was made, since as discussed later the concentration sensors only measured accurately the initial concentration, and not the concentration at subsequent times.

### 4.4.2 UDM dispersion predictions

The CO2 concentration was largely measured via O2 cells for both BP and Shell experiments; see Figure 6 [taken from Allason and Armstrong (2011)<sup>22</sup>] for the location of the O2 concentration sensors. Thus a total of 43 sensors was applied at downstream distances of 5m (sensor OC01), 10m (OC02), 15m (OC03), 20m (OC04-OC08), 40m (OC9-OC21), 60m (OC22-OC28) and 80m (OC29-OC43), with sensors position at a range of different heights (0.3, 1 or 3 m) and cross-stream distances (between -20 and +20 degrees from the release direction) with two additional Servomex CO2 analysers.





#### Figure 6. Field detector array for concentration measurements (Shell CO2 tests) Figure corresponds to Shell tests, but concentration sensor location is also applicable to BP tests.

Phast assumes that the release direction is the same as the wind direction, while for some of the experiments (see Table 29 and Table 30) there is a significant deviation from the wind direction. This may lead to less accuracy of the predictions in the far-field but will not significantly affect the prediction for the momentum-driven dispersion in the near-field.

#### BP tests

Figure 7 plots for test 11 the maximum values over time of the measured concentration along with the Phast predicted concentrations as a function of downstream distance. The measured data include the maximum concentration of the raw data over all times, 11-second, 20-second and 59-second averaged concentrations. For the measured data at a given downstream distance the maximum value of all sensors at that distance is taken, Sensor 14 (located at 40m downstream, 3 meter height) has been excluded since it appeared to give erroneous too high readings (higher than sensors at 1 meter height and sensors further upstream). Furthermore no further analysis has been carried out (e.g. via spline fitting of the measured values to obtain a better fit of the crosswind concentration profile and a better estimate of the maximum concentration) to further refine this maximum value. The Phast predictions were found not to be affected by time-averaging effects due to plume meander (transition to passive dispersion occurring downwind of 80m).

In the near field (< 20 m) the 59-seconds averaged concentration predicted by Phast is close to the measured concentrations. This is also in line with UDM validation against previous experiments, where very close agreement was obtained in the near-field, jet-momentum dominated regime. Further downstream (at 20 meter and 40 meter) it is seen that the spread in the measured concentrations becomes larger with a larger effect of averaging. This is because of (a) larger relative inaccuracy of the sensors, and (b) the CO2 plume centre-line more likely to be further away from the sensor (also because of plume meander). Thus for this case, as is clearly illustrated by Figure 9, the maximum value would lead to too large (rather random) value of the maximum concentration (it would increase with the release duration), while on the other hand the 59-second averaged concentration may lead to too small values.





Figure 7. BP Test 11 – UDM validation for maximum contraction versus distancexii



#### Figure 8. BP Test 9 – UDM validation for maximum concentration versus distance

x<sup>ii</sup> Very close agreement confirmed between 7.1 and UDM AWD results; therefore no update of Figure 7, Figure 8, Figure 9, Figure 10 and Figure 11.



Figure **8** includes results of UDM validation for maximum concentration versus downstream distance for the timevarying test 9 (vapour release). It is again seen that good agreement with the processed averaged experimental data is obtained. For this test, sensors 17 and 14 were considered to give possible incorrect readings for similar reasons to sensor 14 in test 11.

#### Shell tests

For the Shell tests, a limited number of 3rd party commercial CO2 detectors including instruments from Draeger as well as two Servomax gas analysers were used in addition to the O2 sensors in order to verify the accuracy of the O2 sensors. From the results of this it was deduced that the O2 sensors did reasonably predict the initial (maximum) value of the concentration, but did subsequently show an erroneous decay with time which could have been caused by significant cooling of the sensors. This erroneous behaviour of the O2 sensors was confirmed by the experimentalists.

Figure 9, Figure 10 and Figure 11 plot for tests 11 (steady-state cold release), 16 (transient hot release) and 1 (transient liquid release) the maximum values over time of the measured concentration along with the Phast predicted concentrations as a function of downstream distance. The measured data include maximum values and (for steady-state test 11 only) averaged values (over release duration) for the O2 sensors, Servomax sensors, and (if present) Draeger sensors.

Overall it is seen that the maximum O2 values agree well with the UDM predictions, where negligible difference was observed between UDM predictions at 1 meter release height and centre-line (C/L) height. Because of erroneous decay with time, the averaged O2 values result in too low observed values for Test 11. The maximum concentration derived from the Draeger sensors is reasonably aligned with that derived from O2 sensors, but it is particularly less accurate in the far-field because of an insufficient number of sensors (and thus the Draeger sensors may miss the centre-line of the plume).



Figure 9. Shell Test 11 – UDM validation for maximum contraction versus distance





Figure 10. Shell Test 16 - UDM validation for maximum concentration versus distance



Figure 11. Shell Test 1 – UDM validation for maximum concentration versus distance



### 4.4.3 Comparison statistics between predicted and observed concentrations

Table 12 and Figure 12 include the predictions of MG and VG for the BP and Shell experiments. It is noted that all MG values are well within the range of [0.5, 2], and all variances less than 1.6 which is normally considered to be excellent agreement with the experimental data. In Table 12 and Figure 12 the observed maximum concentration at a downstream distance is taken as the maximum value of all sensors at that downstream distance.

| Experiment | Arcwis | e conc | Comments              |
|------------|--------|--------|-----------------------|
| / Group ID | MG     | VG     |                       |
| BP CO2     |        |        |                       |
| BP1        | 0.88   | 1.19   | steady-state cold     |
| BP2        | 1.45   | 1.15   | steady-state cold     |
| BP3        | 1.60   | 1.30   | steady-state cold     |
| BP5        | 1.58   | 1.24   | steady-state cold     |
| BP6        | 1.66   | 1.33   | steady-state cold     |
| BP11       | 1.00   | 1.20   | steady-state cold     |
| BP8        | 1.26   | 1.07   | transient hot         |
| BP8R       | 1.25   | 1.12   | transient hot         |
| BP9        | 1.41   | 1.13   | transient hot         |
| BPSSC      | 1.35   | 1.24   | All steady-state cold |
| BBTH       | 1.31   | 1.11   | All transient hot     |
| All        | 1.34   | 1.19   | All cases             |
| Shell CO2  |        |        |                       |
| SH3        | 1.37   | 1.11   | steady-state cold     |
| SH5        | 1.03   | 1.03   | steady-state cold     |
| SH11       | 1.16   | 1.17   | steady-state cold     |
| SH1        | 1.07   | 1.02   | transient cold        |
| SH2        | 1.05   | 1.03   | transient cold        |
| SH4        | 1.07   | 1.02   | transient cold        |
| SH14       | 1.20   | 1.08   | transient hot         |
| SH16       | 1.35   | 1.28   | transient hot         |
| SHSSC      | 1.18   | 1.10   | All steady-state cold |
| SHTC       | 1.07   | 1.02   | All transient cold    |
| SHTH       | 1.27   | 1.17   | All transient hot     |
| All        | 1.14   | 1.08   | All cases             |

Table 12. UDM values of MG and VG for BP and Shell CO2 experiments





Figure 12. UDM values of MG and VG for BP and Shell CO2 experiments

For the BP experiments, the maximum value over all times of the 11-second averaged concentrations has been applied and sensors of apparent false readings have been ignored. Therefore conservative estimates are obtained of the averaged observed concentrations for the steady-state cold releases (1, 2, 3, 5, 6, 11), which may (partly) explain the under-prediction of the concentrations for the experiments 2, 3, 5, 6. For tests 1, 3, 6 there was a significant difference between the wind direction (averaged over the entire release duration) and the release direction. However the above results show that the plume centre-line did not significantly miss the sensors. Further downstream this may have been caused because we adopt 11-second averaged concentrations (maximum overall all times) rather than concentrations averaged over the entire release duration. Furthermore it must be noted that for tests 3 and 6 a 2" 1.44 m extension tube was attached downstream to the  $\frac{1}{2}$ " (test 3) and  $\frac{1}{4}$ " (test 6) nozzle, which is not expected to affect the discharge flow rate but is likely to have affected the dispersion. This may explain the largest under-prediction of the concentrations (largest MG values) for tests 3 and test 6.

For the Shell experiments, maximum concentrations for the O2 sensors were used, and none of the O2 sensors was ignored even though they may provide a less accurate reading. This may have caused the overall underprediction for the Shell experiments. Furthermore for the steady-state releases a higher accuracy is obtained than for the BP experiments, because of (a) input of more accurate measured flow rate and (b) use of conservative 11second average estimate (maximum over all times during release duration) for the BP experiments.

### 4.5 Buried pipeline / Crater Releases (COSHER)

### 4.5.1 Facility and measurement grid

Both of the COSHER experiments used the same facility at the GL test site at Spadeadam. It comprised a 117.1 m long, 1321 mm (52") diameter steel pipeline connected to a 226.6 m long pipeline loop formed from 200 mm (8") diameter steel pipe. A 4 m rupture spool was located at the halfway point of the loop. The arrangement is shown in Figure 13 (Ahmad, et al., 2015).





Figure 13: The experimental facility

Details of the test rig are given in Table Table 13.

Summary of dimensional and constructional information of the rig.

|                        | Reservoir              | Loop                 |
|------------------------|------------------------|----------------------|
| Steel                  | API-5LX80              | A333 grade 6         |
| Outside diameter       | 1320.8                 | 219.1                |
| Wall thickness         | 25.8                   | 12.7                 |
| Internal diameter      | 1269.2                 | 193.7                |
| Surface roughness      | -                      | Range: 7.8–3.7 μm    |
|                        |                        | Ra. Average:         |
|                        |                        | 5.5 μm Ra            |
| Length                 | 117.1 m (between       | 226.6                |
|                        | dome ends)             |                      |
| Dome end volume (each) | 0.3 m <sup>3</sup>     | -                    |
| Reservoir slope        | <b>0.494</b> °         | 0                    |
| Volume                 | 148.752 m <sup>3</sup> | 6.677 m <sup>3</sup> |
| Total volume           | $155.429 \mathrm{m}^3$ |                      |

## Table 13. The COSHER test rig

The sensor locations are given for Test 1 by Lowesmith, though are likely the same for Test 2. However for each test wind direction is different, and locations must be corrected. The locations relative to a fixed grid north are shown in Figure 14.





Figure 14. Instrumentation locations

| Input                                       | Test 2 (Ahmad) | Test 1 (Lowesmith) |
|---------------------------------------------|----------------|--------------------|
| Initial pressure (barg)                     | 150.8          | 151.7              |
| Initial temperature (degC)                  | 13.1           | 7.5                |
| Inventory (tonnes)                          | 146.8          | 151.4              |
| Ambient pressure (mbar)                     | 997.0          | 980.1              |
| Ambient temperature (degC)                  | 17.4           | 6.3                |
| Relative humidity (frac)                    | 0.715          | 0.796              |
| Windspeed (m/s)                             | 1.9            | 4.7xiii            |
| Wind reference height (m)                   | ?              | 5                  |
| Wind direction relative to grid north (deg) | 261            | 255                |

## Table 14. The COSHER test conditions

Ahmad and Lowesmith observe that the release was (pseudo-) steady state between 50-180s (Test 2), and 50-250s (Test 1). Using the long-pipeline model as described above (i.e. in the absence of a 52" storage reservoir) produces a strongly time-varying release, and so we have represented it used a single segment averaged over a time (10 s for Test 2, 20s for Test 1) such that the rate closely matches the experimentally observed one. The resulting source term is shown in Table 15.

xiii Using location L02 as suggested in text



| Result                  | Phast prediction        |                    | Notes                             |
|-------------------------|-------------------------|--------------------|-----------------------------------|
|                         | COSHER 2                | COSHER 1           |                                   |
| Release rate (kg/s)     | 754                     | 618 <sup>xiv</sup> | Matched by varying averaging time |
| Release duration (s)    | 153                     | 200                | Inventory released in 1 hr        |
|                         | Post-expansion          |                    |                                   |
| Temperature (degC)      | -78.6                   | -78.6              | Solid/vapour equilibrium          |
| Solid mass fraction     | 0.38                    | 0.40               |                                   |
| Velocity (m/s)          | 205.1                   | 198.0              |                                   |
|                         | Post-crater (Defined ar | ea model)          |                                   |
| Solid mass fraction     | 0.38                    | 0.40               |                                   |
| Velocity (m/s)          | 19.28                   | 15.31              |                                   |
| Mass flow of air (kg/s) | 203.2                   | 166.6              |                                   |

Table 15. Baseline Phast source term from matching release rates

## 4.5.2 Crater modelling

Buried pipelines invoke the crater model. This predicts the size and shape of crater formed immediately after the rupture, as well as a reduction in velocity and a mass of air entrained by mixing within the crater. These modifications are given at the bottom of Table 15. It is not clear what crater size correlations predict – averaged or maximum dimensions. Here the observed maximum dimensions are given, as these are clearer to interpret from the published information (essentially plan views).

|                 | Width (m) | Length (m) | Depth (m) |
|-----------------|-----------|------------|-----------|
| COSHER 2        |           |            |           |
| Observed        | 4.2       | 5.2        | 1.2       |
| Predicted       | 4.36      | 5.62       | 1.08      |
| Ramirez-Camacho | 3.52      | 6.56       | 1.75      |
| COSHER 1        |           |            |           |
| Observed        | 5.1       | 4.5        | 0.8       |
| Predicted       | 4.36      | 5.65       | 1.08      |
| Ramirez-Camacho | 3.52      | 6.56       | 1.75      |

## Table 16. Maximum observed and predicted crater dimensions

Also given are the predictions of the correlations for natural gas pipelines by Ramirez-Camacho et al. (2019) derived from multivariate regression of historical accident data.

## 4.5.3 Concentration measurements

The UDM is run using the post-crater source term. We left all parameters at default values. Validation data came from Figures 11 and 12 in the Ahmad paper and Figures 32-35 in Lowesmith. We captured at the sampler locations the maximum concentration for each time series and compared it with Phast predicted maximum concentrations. In addition we used a subset of these as the arcwise maximum concentrations – i.e. for a given arc (50m, 100m etc) the maximum experimental concentration.

The sampler locations from the paper were adjusted to account for a wind direction offset of 9° and 15° from the sampling grid. The local sensor heights of 1m was used universally, although Ahmad suggests some sensor locations may have been at a height of 1.8m.

For the reduced set of arcwise maximum comparison, the Y co-ordinate of all points for the simulation was set to zero

xiv Not measured directly - estimated from inventories



# 4.5.4 Dispersion Results

The maximum concentrations (observed and predicted; arcwise and pointwise) for the two COSHER tests are shown in Figure 15 and Figure 16.



Figure 15. Maximum arcwise concentration for COSHER experiments





## Figure 16. Maximum pointwise concentration for COSHER experiments

Table **17** gives the summary MG and VG values for arcwise and pointwise concentrations

| Experiment | Arcwis | se conc | Pointv | vise conc |
|------------|--------|---------|--------|-----------|
| / Group ID | MG     | VG      | MG     | VG        |
| COSHER     |        |         |        |           |
| COSHER1    | 0.86   | 1.06    | 1.16   | 1.29      |
| COSHER2    | 1.09   | 1.15    | 0.90   | 1.17      |
| All        | 0.98   | 1.11    | 1.07   | 1.25      |

## Table 17. Arwise and pointwise MG/VG values for COSHER CO2 simulations

The results indicate good agreement between Phast and the experimental concentrations. Cosher 1 does show some under-prediction at low pointwise concentrations, but this is mainly limited to concentrations below the 1% level and therefore of less interest for CO<sub>2</sub> toxicity.

Results are much improved over previous (v8.71 and earlier) Phast versions, which greatly under-predicted ground level concentrations – especially upwind and crosswind of the release point.

Both cases are using the new defined-area source term model, and the gas blanket dispersion model. These are the default options in v8.9 for CO<sub>2</sub>. Those interested are referred to the Crater Model and UDM Theory technical documents for further details.



# 4.6 Finite-duration dispersion

## 4.6.1 Kit Fox experiments

UDM input data have been obtained from the MDA database given by Hanna and Chang  $(1999)^{23}$ ; see Appendix A.4. The ground-level area source is modelled as a circular source of vapour-phase CO2 with diameter 1.69 m with corresponding source area A equal to that of the actual 1.5m x 1.5m square source; see Figure 17.



Figure 17. Plot plan of the Kit Fox site



In this section results are reported of experiments with a uniform surface roughness only (URA; roughness estimated between 0.01 and 0.02 m; adopted value 0.01m); see Table 18.

| Kit Fox<br>Series<br>(URA) | duration<br>(s) | flow<br>rate<br>(kg/s) | release<br>velocity<br>(m/s) | Experiments grouped by stability class |                     |                                 |
|----------------------------|-----------------|------------------------|------------------------------|----------------------------------------|---------------------|---------------------------------|
|                            |                 |                        |                              | D                                      | Ε                   | F                               |
| continuous                 | <u>≥</u> 120    | 1.5-2.1                | 0.4-0.6                      | 604, 805                               | 702,808,605,703,705 | 606,811,709, 609,712            |
| puff                       | 20              | 1.1-1.8                | 0.3-0.5                      | 801,601,803,802,<br>804,602,603,806    | 807,809,706,810,812 | 704,708,710,607,711,<br>608,714 |

### Table 18. List of URA Kit Fox experiments for UDM validation

The release is modelled from an area source where observers are released from the upstream edge. The groundlevel cloud is modelled physically more correctly above the source and in the near-field. No additional timeaveraging applied to the calculated concentrations at each arc.

Table 19 presents the predictions of MG and VG for the KitFox URA experiments. The individual results are split into continuous and puff experiments. Combined results by stability are also provided. A graphical presentation of the overall MG and VG validation results for the arc-wise concentrations from Table 19 is shown in Figure 18. The overall results can be summarised as follows:

- URA continuous: excellent prediction for both concentration and cloud widths
- URA puff: there is over-prediction for, all results. This is most pronounced for the D weather state, reducing for E and is much improved for F (only a slight over-prediction).



Figure 18. UDM validation statistics for Kit Fox URA experiment



| Experiment        | Arcwise | e conc | Wie  | dth  | Comments              |
|-------------------|---------|--------|------|------|-----------------------|
| / Group ID        | MG      | VG     | MG   | VG   |                       |
| KitFox URA (Conti | nuous)  |        |      |      |                       |
| KF0604            | 0.91    | 1.21   | 0.88 | 1.03 | Kitfox URA Cont D     |
| KF0805            | 0.73    | 1.20   | 0.99 | 1.01 | Kitfox URA Cont D     |
| KF0605            | 0.94    | 1.09   | 0.81 | 1.06 | Kitfox URA Cont E     |
| KF0702            | 0.90    | 1.02   | 1.18 | 1.06 | Kitfox URA Cont E     |
| KF0703            | 0.91    | 1.03   | 1.30 | 1.09 | Kitfox URA Cont E     |
| KF0705            | 0.95    | 1.02   | 1.19 | 1.04 | Kitfox URA Cont E     |
| KF0808            | 0.61    | 1.30   | 1.08 | 1.02 | Kitfox URA Cont E     |
| KF0606            | 1.15    | 1.14   | 0.98 | 1.02 | Kitfox URA Cont F     |
| KF0609            | 1.01    | 1.02   | 1.12 | 1.01 | Kitfox URA Cont F     |
| KF0709            | 0.96    | 1.01   | 0.90 | 1.03 | Kitfox URA Cont F     |
| KF0712            | 1.21    | 1.06   | 1.34 | 1.15 | Kitfox URA Cont F     |
| KF0811            | 1.00    | 1.10   | 0.81 | 1.07 | Kitfox URA Cont F     |
| Continuous D      | 0.81    | 1.20   | 0.93 | 1.02 | Continuous, Weather D |
| Continuous E      | 0.85    | 1.09   | 1.09 | 1.05 | Continuous, Weather E |
| Continuous F      | 1.06    | 1.06   | 0.99 | 1.05 | Continuous, Weather F |
| All               | 0.93    | 1.10   | 1.03 | 1.05 | Continuous, All       |
| KitFox URA (Puff) |         |        |      |      |                       |
| KF0601            | 0.30    | 4.94   | 0.84 | 1.09 | Kitfox URA Puff D     |
| KF0602            | 0.29    | 4.97   | 1.05 | 1.03 | Kitfox URA Puff D     |
| KF0603            | 0.45    | 1.90   | 0.79 | 1.06 | Kitfox URA Puff D     |
| KF0801            | 0.28    | 5.46   | 1.13 | 1.07 | Kitfox URA Puff D     |
| KF0802            | 0.31    | 3.86   | 0.88 | 1.04 | Kitfox URA Puff D     |
| KF0803            | 0.37    | 2.82   | 0.94 | 1.06 | Kitfox URA Puff D     |
| KF0804            | 0.40    | 2.29   | 0.91 | 1.03 | Kitfox URA Puff D     |
| KF0806            | 0.41    | 2.27   | 0.58 | 1.35 | Kitfox URA Puff D     |
| KF0706            | 0.59    | 1.38   | 0.65 | 1.22 | Kitfox URA Puff E     |
| KF0807            | 0.54    | 1.48   | 0.62 | 1.29 | Kitfox URA Puff E     |
| KF0809            | 0.61    | 1.40   | 0.73 | 1.12 | Kitfox URA Puff E     |
| KF0810            | 0.48    | 1.90   | 0.75 | 1.11 | Kitfox URA Puff E     |
| KF0812            | 0.65    | 1.56   | 0.60 | 1.34 | Kitfox URA Puff E     |
| KF0607            | 1.02    | 1.65   | 0.65 | 1.22 | Kitfox URA Puff F     |
| KF0608            | 0.73    | 1.48   | 0.65 | 1.22 | Kitfox URA Puff F     |
| KF0704            | 0.73    | 1.12   | 0.71 | 1.16 | Kitfox URA Puff F     |
| KF0708            | 0.77    | 1.25   | 0.72 | 1.12 | Kitfox URA Puff F     |
| KF0710            | 0.83    | 1.33   | 0.67 | 1.19 | Kitfox URA Puff F     |
| KF0711            | 0.84    | 1.34   | 0.67 | 1.19 | Kitfox URA Puff F     |
| KF0713            | 1.51    | 3.06   | 1.23 | 1.11 | Kitfox URA Puff F     |
| KF0714            | 0.48    | 2.08   | 1.05 | 1.00 | Kitfox URA Puff F     |
| Puff D            | 0.35    | 3.31   | 0.87 | 1.09 | Puff, Weather D       |
| Puff E            | 0.57    | 1.53   | 0.67 | 1.21 | Puff, Weather E       |
| Puff F            | 0.82    | 1.58   | 0.75 | 1.17 | Puff, Weather F       |
| All               | 0.54    | 2.08   | 0.77 | 1.15 | Puff, All             |

Table 19: UDM values of MG and VG for KitFox URA experiments



# 4.6.2 Jack Rabbit II experiments

In 2015 and 2016 nine large (up to ~ 10 tonnes) 2-phase chlorine releases were carried out at the US Army Dugway Proving Ground in Utah. These are known as the Jack Rabbit 2 (JR2) tests. Measurements of chlorine concentrations were made out to a distance of 11 km downwind. The 2015 tests were centred in an array of shipping containers (simulating an urban environment) and the 2016 tests were carried out in flat terrain.

A number of models (including Phast) were invited to take part in the Modelling Working Group (MWG), which would simulate the tests using a standardised set of inputs and outputs. Three trials were selected: 1, 6 and 7. Trial 1 from 2015 used the array of shipping containers, while Trials 6 and 7 from 2016 did not. The results of the cross model comparison was published by Mazzola et al<sup>24</sup>:

Information was provided to try to standardise the input in the models participating in the MWG. The general information on the trials is provided in Table 24, and more detailed information about the release is shown in Table 21. These represent quite complex releases involving a flashing liquid, with Trials 1 and 6 impinging downwards from 1m while trial 7 impinges downwards at a 45° angle from 1.48m. Table 24 attempts to quantify how much of the initial release became vapour, and how much rained out into a pool and was subsequently evaporated. There is clearly much uncertainty around this.

Given the uncertainty around the source term, the Phast modelling of these releases has been made as simple as possible. As the release and pool evaporation are of short duration the results are actually not overly sensitive to however the source is modelled. We have taken the total vapour generation rate from the 'Modified for rainout' and 'Evaporated rainout' sections of Table 21 as a constant vapour flow rate, and modified the duration so that the total mass of vapour released is equal to that as calculated from Table 21. The Phast parameters used are presented in Table 22

|                                                                     | Trial 1                                                                   | Trial 6                                                          | Trial 7                                                          |
|---------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|
| Release Parameters                                                  |                                                                           |                                                                  |                                                                  |
| Location, all at Dugway Proving Grounds; Zone 12<br>UTM coordinates | Northing<br>4445633.9 m<br>Easting<br>288109.2 m<br>Elevation<br>1295.5 m | Northing 4445633.9 m<br>Easting 288109.2 m<br>Elevation 1295.5 m | Northing 4445633.9 m<br>Easting 288109.2 m<br>Elevation 1295.5 m |
| Date and Time (hh:mm:ss UTC)                                        | 24 August 2015<br>13:35:45                                                | 31 August 2016<br>14:23:35                                       | 2 September 2016<br>13:56:00                                     |
| Tank Inventory (kg of Cl2)                                          | 4500                                                                      | 8400                                                             | 9100                                                             |
| Pressure measured at top of tank (psia) <sup>1</sup>                | 104.4                                                                     | 86.8                                                             | 86.9                                                             |
| Liquid temperature (°C) <sup>1</sup>                                | 15.7                                                                      | 16.0                                                             | 15.9                                                             |
| Release jet orientation (deg from tank top centre)                  | 180                                                                       | 180                                                              | 135                                                              |
| Release height (m)                                                  | 1.0                                                                       | 1.0                                                              | 1.48                                                             |
| Hole diameter                                                       | 6.0 in = 0.152 m                                                          | 6.0 in = 0.152 m                                                 | 6.0 in = 0.152 m                                                 |
| Weather/Environment                                                 |                                                                           |                                                                  |                                                                  |
| Weather conditions                                                  |                                                                           |                                                                  |                                                                  |
| Atmospheric pressure (mbar)                                         | 873.7                                                                     | 871.1                                                            | 868.5                                                            |
| Initial wind speed <sup>2</sup> (m/s) at $z = 2 m$                  | 1.45                                                                      | 2.42                                                             | 3.98                                                             |
| Initial wind direction <sup>2</sup> at $z = 2 m$                    | 147.4                                                                     | 146.9                                                            | 149.6                                                            |
| Initial temperature (°C) at z = 2 m                                 | 17.5                                                                      | 22.3                                                             | 18.7                                                             |
| Surface roughness (mm)                                              | 0.5                                                                       | 0.5                                                              | 0.5                                                              |
| Friction velocity <sup>3</sup> , u <sup>*</sup> (m/s)               | 0.108                                                                     | 0.093                                                            | 0.210                                                            |
| Sensible heat flux <sup>3</sup> , Hs, (K-m/s)                       | -0.012                                                                    | -0.0034                                                          | -0.0160                                                          |
| Inverse Monin-Obukhov length (m <sup>-1</sup> )                     | 0.124                                                                     | 0.056                                                            | 0.0229                                                           |
| Pasquill Class                                                      | E/F                                                                       | E                                                                | D/E                                                              |

Table 20: General information provided to modellers for Jack Rabbit II



|                                      | Trial 1 | Trial 6 | Trial 7 |
|--------------------------------------|---------|---------|---------|
| Primary release                      |         |         |         |
| Discharge rate (kg/s)                | 224.    | 260.    | 259     |
| Discharge period (s)                 | 20.3    | 32.2    | 33.3    |
| Temperature (°C)                     | -37.3   | -37.4   | -37.4   |
| Vapor fraction (ignoring KE effects) | 0.171   | 0.172   | 0.172   |
| Density (kg/m <sup>3</sup> )         | 18.32   | 18.15   | 18.12   |
| Velocity (m/s)                       | 50.8    | 44.2    | 44.2    |
| Area (m <sup>2</sup> )               | 0.241   | 0.324   | 0.323   |
| Primary release modified for rainout |         |         |         |
| Discharge rate (kg/s)                | 145     | 168     | 162     |
| Discharge period (s)                 | 20.4    | 32.4    | 33.6    |
| Temperature (°C)                     | -37.3   | -37.4   | -37.4   |
| Vapor fraction (ignoring KE effects) | 0.264   | 0.266   | 0.274   |
| Density (kg/m <sup>3</sup> )         | 11.89   | 11.79   | 11.41   |
| Velocity (m/s)                       | 50.8    | 44.2    | 44.2    |
| Area (m <sup>2</sup> )               | 0.240   | 0.323   | 0.322   |
| Evaporated rainout                   |         |         |         |
| Discharge rate (kg/s)                | 43.2    | 34.0    | 34.0    |
| Discharge period (s)                 | 36.8    | 86.4    | 93.4    |
| Temperature (°C)                     | -37.3   | -37.4   | -37.4   |
| Vapor fraction                       | 1       | 1       | 1       |
| Density (kg/m <sup>3</sup> )         | 3.160   | 3.152   | 3.144   |
| Area (m <sup>2</sup> )               | 491     | 491     | 491     |

Table 21: Detailed release data for Jack Rabbit II

|                                      | Trial 1 | Trial 6 | Trial 7 |
|--------------------------------------|---------|---------|---------|
| Primary release                      |         |         |         |
| Discharge rate (kg/s)                | 188     | 202     | 196     |
| Discharge period (s)                 | 24.16   | 41.4    | 44      |
| Temperature (°C)                     | -37.3   | -37.4   | -37.4   |
| Vapor fraction (ignoring KE effects) | 1       | 1       | 1       |
| Density (kg/m <sup>3</sup> )         | 18.32   | 18.15   | 18.12   |
| Velocity (m/s)                       | 50.8    | 44.2    | 44.2    |

### Table 22: Simplified release data used in Phast model

Phast 8.23 was identified in the Mazzola paper as predicting much wider clouds to 20ppm (and 200ppm for Trial 7) than the other models, and also under-predicting concentrations in the far-field. In Phast 8.6 we have introduced the gravity spreading collapse model (GSC) to address these issues (see UDM Theory document for details), and it is therefore useful to update the results.

Calculated MG and VG for the predicted centreline concentrations and widths to 20 ppm are presented in Table 23, and the concentrations are also plotted in Figure 19. The equivalent calculations without the new gravity spreading collapse model are presented in Figure 19 for comparison. We see a significant improvement in the concentration prediction with GSC activated, with a clear move away from under-prediction. It follows that Phast 8.6 results are significantly improved over Phast 8.23.

The MG/VG analysis can mask the detail of the changes in the calculation, and what we are seeing is similar concentrations in the near to mid-field, but GSC overall maintaining a higher concentration in the far field. An example of this is presented in the concentration vs distance plot in Figure 20, where the impact of GSC specifically on far field concentrations is more evident.

| Experiment                    | Arcwise | Arcwise conc |      | 20 ppm |  |  |
|-------------------------------|---------|--------------|------|--------|--|--|
| / Group ID                    | MG      | MG VG        |      | VG     |  |  |
| Jack Rabbit II chlorine cases |         |              |      |        |  |  |
| Trial 1                       | 1.01    | 1.51         | 0.27 | 5.75   |  |  |
| Trial 6                       | 0.67    | 2.36         | 0.31 | 4.03   |  |  |
| Trial 7                       | 1.41    | 1.74         | 0.38 | 2.54   |  |  |
| All                           | 0.98    | 1.87         | 0.32 | 3.89   |  |  |

| Table 23: MG and VG values for the plume centreline conce | entration and width to 20 ppm |
|-----------------------------------------------------------|-------------------------------|
|-----------------------------------------------------------|-------------------------------|





Figure 19: MG and VG values plot the plume centreline concentration (without GSC included for comparison)



Figure 20: Concentration vs Distance for Trail 1, with and without GSC



# 4.7 PHMSA Validation

Phast 8.4 has undergone an external assessment process by the US Department of Transport Pipeline and Hazardous Materials Safety Administration (PHMSA) requiring the comparison of results with a set of field-scale and wind-tunnel tests. This process was previously granted for Phast 6.7 in 2011, with approval sought in 2021 for Phast 8.4. The field-scale experiments have a strong focus on time-varying releases from LNG pool sources, with three of the experiments (Maplin Sands, Burro and Coyote) involving dispersion from an evaporating pool. The validation has been based on the guide to the LNG Model Validation Database by Stewart et al. (Stewart, Coldrick, Gant, & Ivings, 2016)<sup>25</sup> and the technical report by Ivings et al. (Ivings, et al., 2016)<sup>26</sup>. The input data and concentration measurements are chosen as prescribed by version 12 of the modelling dataset Excel spreadsheet supplied by PHMSA.

Results in this section are specifically for Phast 8.6, which includes features not present in 8.4.

## 4.7.1 Selection of experiments

The Phast model UDM cannot account for obstacles, slopes or fences. Hence model results are only provided for experiments without obstructions, i.e.

- Large-scale LNG experiments: Maplin Sands (27,34,35), Burro (3,7,8,9), Coyote (3,5,6)
- Large-scale Thorney Island Freon/Nitrogen experiments (TI45, TI47)
- Wind-tunnel ground-level area sources: CHRC-A CO2 (16), BA Hamburg SF6 (DA0120, DAT223) and BA-TNO SF6 (TUV01, FLS).

Table 24 lists the experiments against which the UDM model has been validated and lists how each model has been modelled by the UDM. The UDM (without source calculations) is invoked in Phast as a 'user-defined source'. This allows us to use exactly the inputs specified in the V12 database. The scenario selection is carried out in the 'Discharge' tab of the 'User-defined source'. The 'Leak' scenario is selected for all field experiments (low momentum horizontal release), while the 'Pool source' scenario is selected for all wind-tunnel experiments (ground-level vapour pool source).

| Experiment     | Trial<br>Number  | Field (F) or<br>Wind tunnel<br>(WT) | Material               | Modelled by UDM as                           |
|----------------|------------------|-------------------------------------|------------------------|----------------------------------------------|
| Maplin Sands   | 27<br>34<br>35   | F                                   | LNG                    | Low momentum elevated horizontal release     |
| Burro          | 3<br>7<br>8<br>9 | F                                   | LNG                    | Low momentum elevated horizontal release     |
| Coyote         | 3<br>5<br>6      | F                                   | LNG                    | Low momentum elevated horizontal release     |
| Thorney Island | 45<br>47         | F                                   | Freon & N <sub>2</sub> | Low momentum ground-level horizontal release |
| CHRC           | А                | WT                                  | CO2                    | Ground-level vapour pool source              |
| BA-Hamburg     | DA0120<br>DAT223 | WТ                                  | SF <sub>6</sub>        | Ground-level vapour pool source              |
| BA-TNO         | TUV01<br>FLS     | WT                                  | SF <sub>6</sub>        | Ground-level vapour pool source              |

Table 24: List of experiments for PHMSA UDM validation



# 4.7.2 Analysis & Discussion

The geometric mean (MG) and geometric variance (VG) are probably the most common statistical measures used to assess model performance with experiment and are used in this section to form the basis of the results analysis.

MG and VG values for the experiments assessed are provided in Table 25 and Table 26 for point-wise and arcwise analysis respectively. The PHMSA "Method 2" rolling average approach is used for time averaging where required as this is best aligned the UDM. Concentrations from Phast have been imported into the V12 database and the MG and VG calculated within the database are provided in the tables.

For reference and context, the MG and VG values submitted for the previously submitted Phast 8.4 are also provided, assessed against the sate data-set using the same methodology

MG VG plots for individual experiments and by the experiment groups for both point wise and arc wise calculations are presented in Figure 21-Figure 24.

| Case                     | v8.9  |       | v     | 8.4   |
|--------------------------|-------|-------|-------|-------|
|                          | MG    | VG    | MG    | VG    |
| Maplin Sands 27 (short)  | 8.61  | >1000 | 12.52 | >1000 |
| Maplin Sands 34 (short)  | 1.57  | 1.3   | 3.30  | 4.69  |
| Maplin Sands 35 (short)  | 16.91 | >1000 | 33.82 | >1000 |
| Coyote 3 (short)         | 1.08  | 2.32  | 1.20  | 2.70  |
| Coyote 5 (short)         | 0.89  | 1.73  | 0.98  | 1.83  |
| Coyote 6 (short)         | 0.49  | 4.02  | 0.55  | 4.26  |
| Coyote 3 (long)          | 0.70  | 3.27  | 0.75  | 3.32  |
| Coyote 5 (long)          | 0.35  | 6.12  | 0.41  | 5.20  |
| Coyote 6 (long)          | 0.30  | 9.39  | 0.29  | 9.45  |
| Burro 3 (short)          | 1.54  | 1.75  | 1.60  | 1.85  |
| Burro 7 (short)          | 0.64  | 3.29  | 0.67  | 3.12  |
| Burro 8 (short)          | 1.57  | 1.89  | 1.36  | 1.53  |
| Burro 9 (short)          | 0.93  | 1.37  | 0.97  | 1.38  |
| Burro 3 (long)           | 0.95  | 1.62  | 0.99  | 1.62  |
| Burro 7 (long)           | 0.44  | 7.40  | 0.46  | 7.03  |
| Burro 8 (long)           | 1.16  | 1.58  | 1.04  | 1.53  |
| Burro 9 (long)           | 0.66  | 2.00  | 0.71  | 1.98  |
| Thorney Island 45 (long) | 1.37  | 2.24  | 2.14  | 3.22  |
| Thorney Island 47 (long) | 1.25  | 4.88  | 1.73  | 6.29  |
| CHRC A (S)               | 1.71  | 2.20  | 1.72  | 2.18  |
| BA Hamburg DA01020 (S)   | 3.33  | 4.48  | 3.29  | 4.31  |
| BA Hamburg DAT223 (S)    | 1.90  | 1.65  | 1.90  | 1.66  |
| BA TNO TUV01 (S)         | 1.67  | 1.58  | 1.67  | 1.58  |
| BA TNO FLS (S)           | 2.41  | 2.78  | 2.34  | 2.69  |

Table 25: Point-wise MG and VG results





Figure 21: Pointwise MG VG Plot for PHMSA individual experiments (Phast 8.6)



Figure 22: Pointwise MG VG Plot for PHMSA grouped experiments (Phast 8.6)



| Case                     | v     | v8.6   |       | 8.4    |
|--------------------------|-------|--------|-------|--------|
|                          | MG    | VG     | MG    | VG     |
| Maplin Sands 27 (short)  | 6.76  | 115.38 | 8.33  | 373.80 |
| Maplin Sands 34 (short)  | 2.80  | 3.16   | 3.66  | 6.58   |
| Maplin Sands 35 (short)  | 20.66 | >1000  | 41.80 | >1000  |
| Coyote 3 (short)         | 1.07  | 3.69   | 1.22  | 4.98   |
| Coyote 5 (short)         | 0.93  | 1.88   | 0.81  | 1.27   |
| Coyote 6 (short)         | 0.79  | 1.63   | 0.95  | 2.08   |
| Coyote 3 (long)          | 0.83  | 4.76   | 0.90  | 5.21   |
| Coyote 5 (long)          | 0.38  | 4.64   | 0.34  | 3.89   |
| Coyote 6 (long)          | 0.67  | 1.30   | 0.61  | 1.39   |
| Burro 3 (short)          | 1.24  | 1.35   | 1.28  | 1.38   |
| Burro 7 (short)          | 0.80  | 1.23   | 0.83  | 1.23   |
| Burro 8 (short)          | 2.83  | 3.24   | 2.48  | 2.51   |
| Burro 9 (short)          | 0.98  | 1.29   | 1.01  | 1.29   |
| Burro 3 (long)           | 0.80  | 1.47   | 0.84  | 1.44   |
| Burro 7 (long)           | 0.67  | 1.41   | 0.70  | 1.36   |
| Burro 8 (long)           | 2.57  | 2.83   | 2.22  | 2.41   |
| Burro 9 (long)           | 0.72  | 1.50   | 0.77  | 1.50   |
| Thorney Island 45 (long) | 0.91  | 1.48   | 1.95  | 1.81   |
| Thorney Island 47 (long) | 0.60  | 2.70   | 1.05  | 1.35   |
| CHRC A (S)               | 2.51  | 2.42   | 2.51  | 2.41   |
| BA Hamburg DA01020 (S)   | 3.29  | 4.32   | 3.29  | 4.31   |
| BA Hamburg DAT223 (S)    | 2.08  | 1.81   | 2.09  | 1.82   |
| BA TNO TUV01 (S)         |       |        | -     | -      |
| BA TNO FLS (S)           | 3.33  | 4.41   | 3.32  | 4.37   |

Table 26: Arc-wise MG and VG results





Figure 23: Arcwise MG VG Plot for PHMSA individual experiments (Phast 8.6)



Figure 24: Arcwise MG VG Plot for PHMSA grouped experiments (Phast 8.6)



# 4.7.3 Summary

Overall the pattern of Phast 8.6 results is very similar to those submitted for Phast 8.4 as Table 25 and Table 26 show. In the main, there are minor fluctuations to the MG and VG values reported between these releases for most experiments, with the major changes being for Maplin sands and for Thorney Island, where both show large improvements overall.

Maplin Sands, despite the improvement remains significantly under-predicted. The possible causes for this are well known. The spatial (x,y) resolution of the sensors relative to the plumes in the Maplin Sands experiments was not good. Two of the three experiments took place in high wind conditions leading to very narrow plumes which missed most sensors completely. Using the given wind direction, the sensors are 'off-centreline' to an extent that they lie at (or beyond) the edge of the cloud predicted by the UDM. In fact, using the UDM centreline concentration vastly improves alignment with experiment.

The improvement in Thorney Island can be attributed to the inclusion of the Gravity Spreading Collapse model. This restricts the spreading rate when the appropriate conditions are met and subsequently keeps centreline concentrations higher. Only a few of the PHMSA simulations meet the criteria for gravity collapse, the Thorney Island both in that group and the increased concentrations post-collapse are reflected in their MG/VG results which show much reduced under-prediction.



# 4.8 Conclusions and summary overall UDM statistics for all experiments

For each experimental data set, the summary MG and VG values for point wise and arc wise concentrations (and widths where available) are presented in Table 27, and centreline concentrations are plotted in Figure 25. See Sections 4.1.2 (flashing jets excluding  $CO_2$ ), 4.2 (instantaneous releases), 4.4 ( $CO_2$  jets) 4.6 (Kit Fox) and 4.5 (PHMSA) for a discussion of the results.

### Assumptions for UDM AWD runs

The UDM AWD results for PHMSA correspond to the PHMSA specified inputs, with few other required or nondefault inputs set as described in Appendix A.5.

The UDM AWD results for the Kit Fox URA experiments are based on the pool-source assumption including additional time averaging, i.e. the results correspond to those shown in Figure 18.

### **Conclusions**

- 1. Data sets not involving time-varying source terms
  - a. The performance of the UDM against the Prairie Grass, Desert Tortoise, BP, Shell, EEC and Kitfox continuous experiments is good or excellent.
  - b. The performance of the UDM against the aerosol releases of Desert Tortoise, EEC and FLADIS, in which both heavy and jet entrainment dominates, is reasonable.
  - c. The performance against the CO2 pressurised releases, including the COSHER buried pipelines, is excellent
  - d. The performance against the Kit Fox continuous experiments is excellent.
  - e. Results in Phast 8.6 have not significantly changed from Phast 8.4, except for Goldfish which has improved due to the Gravity Spreading Collapse model
- 2. Instantaneous and short duration (URA puff) experiments
  - a. Thorney Island results are good, and consistent with earlier versions.
  - b. The new UDM AWD method produces overall lower MG values (more conservative concentration predictions) than the FDC method.
  - c. Results are best for Stability F (with a slight over-prediction), and worst for Stability D (a significant under-prediction).
- 3. Buried pipeline experiments (COSHER)
  - a. Performance is excellent using the new modelling introduced in Phast / Safeti 8.9, although the COSHER 1 experiment is under-predicted at low concentration levels
  - b. With only 2 experiments, there is a worrying lack of suitable validation data
- 4. Experiments involving dispersion from pool:
  - All pool-based dispersion (Burro, Maplin Sands, Coyote) has been redone since 8.4 using different data and methodology as prescribed by PHMSA. The results for 8.6 remain in line with those for 8.4.
  - b. The results for Burro and Coyote (short) remain good, with only minor variations in statistics since 8.4 Maplin Sands and Thorney island have improved significantly, although for Maplin Sands there remains a large under-prediction (using fixed and widely spaced crosswind sensor locations for narrow plumes can lead to gross under-estimation of concentrations).



- 5. Wind-tunnel experiments
  - CHRC, BA-TNO and BA-Hamburg simulations all under-estimate concentrations, However predictions are significantly better than those obtained for Phast 6.7 (Witlox et al, 2011)<sup>2</sup> All wind-tunnel experiments were simulated at field scale rather than wind-tunnel scale using input a.
  - b. provided by PHMSA. It is possible that scaling of these releases has affected results<sup>xv</sup>

xv Wind-tunnel scale was recommended for the simulations, but this is not currently possible in the UDM due to limitations





Figure 25. Summary MG and VG values for arcwise maximum concentration

| Series          | Arcwise max conc |      | Half-width |      | Pointwise max conc |        |
|-----------------|------------------|------|------------|------|--------------------|--------|
|                 | MG               | VG   | MG         | VG   | MG                 | VG     |
| BP CO2          | 1.34             | 1.19 |            |      |                    |        |
| Burro (long)    |                  |      |            |      | 0.89               | 2.37   |
| Burro (short)   |                  |      |            |      | 1.18               | 1.97   |
| COSHER          | 0.98             | 1.11 |            |      | 1.07               | 1.25   |
| Coyote (long)   |                  |      |            |      | 0.43               | 5.57   |
| Coyote (short)  |                  |      |            |      | 0.78               | 2.52   |
| Desert Tortoise | 1.00             | 1.18 | 1.07       | 1.02 | 0.84               | 11.91  |
| EEC             | 1.37             | 1.16 | 1.60       | 1.29 | 3.38               | 165.98 |
| FLADIS          | 0.78             | 1.69 | 1.39       | 1.17 | 2.29               | 20.03  |



| Goldfish              | 0.87 | 1.22 | 0.77 | 1.13 |      |        |
|-----------------------|------|------|------|------|------|--------|
| Jack Rabbit II        | 0.98 | 1.87 | 0.32 | 3.89 |      |        |
| Maplin Sands LNG      |      |      |      |      | 6.52 | 456.54 |
| Maplin Sands LPG      | 1.87 | 1.85 |      |      |      |        |
| Prairie Grass         | 0.95 | 1.69 | 0.90 | 1.21 | 0.89 | 15.81  |
| Shell CO2             | 1.16 | 1.09 |      |      |      |        |
| Thorney Island (cont) |      |      |      |      | 1.32 | 3.01   |
| Thorney Island (inst) | 0.87 | 1.35 |      |      |      |        |

## Table 27: Summary MG and VG values from Phast 8.6 for concentration for all experimental data sets<sup>xvi</sup>

Widths used are Hanna (Prairie Grass except 8 and 17, Goldfish, Desert Tortoise 3 and 4, URA puff, URA continuous), SMEDIS (EEC, FLADIS, Desert Tortoise 1 and 2) and max width to concentration (JR2). In line with the most recent PHMSA MEP, only pointwise concentrations are compared for the PHMSA set of experiments.

xvi Crosswind experiments not included as point-wise and arc-wise calculations of MG/VG are not used to assess them



# **APPENDICES**

# Appendix A. Notes on Input data for validation runs

#### Continuous (excluding CO<sub>2</sub>) A.1

| Series                        | Prairie Grass   |           |                                     |  |
|-------------------------------|-----------------|-----------|-------------------------------------|--|
| Substance                     | Sulphur Dioxide |           |                                     |  |
| Release type                  | Continuous      | ontinuous |                                     |  |
| Duration, s                   | 600             | 600       |                                     |  |
| Release height, m             | 0.45            |           |                                     |  |
| Jet type                      | Horizontal      |           |                                     |  |
| Dispersing surface            | Land            |           |                                     |  |
| Surface roughness length, m   | 0.006           |           |                                     |  |
| Ref. height for wind speed, m | 2               |           |                                     |  |
| Ref. height for air temp, m   | 2               |           |                                     |  |
| Atmospheric pressure, Pa      | 101325          |           |                                     |  |
| Relative humidity fraction    | 0.7             |           |                                     |  |
| Solar flux, W/m <sup>2</sup>  | 500             |           |                                     |  |
| Averaging time, s             | 600             |           |                                     |  |
|                               |                 |           |                                     |  |
| PG7 PG8 PG9                   | PG13 PG15       | PG17      |                                     |  |
| 0.0899 0.0911 0.092           | 2 0.0611 0.0955 | 0.0565    | Release rate, kg/s                  |  |
| 17.1 17.3 17.2                | 2 11.1 17.5     | 10.5      | Release velocity, m/s               |  |
| 305.15 305.15 301.15          |                 |           | Release temperature, K              |  |
| B C C                         |                 |           | Stability class                     |  |
| 4.2 4.9 6.9                   |                 |           | Wind speed at reference height, m/s |  |
| 305.15 305.15 301.15          |                 |           | Ambient temp., K                    |  |
| 305.15 305.15 301.15          | 5 293.15 295.15 | 300.15 I  | Dispersing surface temp., K         |  |
|                               | B050            |           |                                     |  |
| PG34 PG41 PG50                | PG58            |           |                                     |  |
| 0.0974 0.0399 0.1028          |                 |           | Release rate, kg/s                  |  |
| 18.4 7.3 19.5                 |                 |           | Release velocity, m/s               |  |
| 304.15 294.15 304.15          |                 |           | Release temperature, K              |  |
|                               |                 |           | Stability class                     |  |
| 9 4 6.6                       |                 |           | Wind speed at reference height, m/s |  |
| 304.15 294.15 304.15          | 5 299.15        |           | Ambient temp., K                    |  |
|                               | 000 45          |           | Dispersion surface to an I/         |  |
| 304.15 294.15 304.15          | 5 299.15        | I         | Dispersing surface temp., K         |  |

The data for PG8 and PG17 were provided from SMEDIS<sup>11</sup>
 The dispersing surface temperature was set to the temperature at the reference height.



| Series<br>Substance<br>Release typ<br>Release he<br>Jet type<br>Dispersing<br>surface rou<br>Solar flux, V<br>Bund Surfa | eight, m<br>surface<br>Ighness leng<br>W/m <sup>2</sup> | gth, m | Desert Torto<br>Ammonia<br>Continuous<br>0.79<br>Horizontal<br>Land<br>0.003<br>500<br>Dry Soil | vise                                |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------|-------------------------------------|
| DT1                                                                                                                      | DT2                                                     | DT3    | DT4                                                                                             |                                     |
| 80                                                                                                                       | 112                                                     | 130.7  | 96.7                                                                                            | Release rate, kg/s                  |
| 126                                                                                                                      | 255                                                     | 166    | 381                                                                                             | Duration, s                         |
| 0                                                                                                                        | 0                                                       | 0      | 0                                                                                               | Bund diameter, m                    |
| D                                                                                                                        | D                                                       | D      | E                                                                                               | Stability class                     |
| 7.42                                                                                                                     | 5.8                                                     | 7.6    | 4.64                                                                                            | Wind speed at reference height, m/s |
| 302                                                                                                                      | 304                                                     | 307.05 | 306.9                                                                                           | Ambient temp., K                    |
| 0.132                                                                                                                    | 0.175                                                   | 0.148  | 0.213                                                                                           | Relative humidity fraction          |
| 90888                                                                                                                    | 90990                                                   | 90586  | 90280                                                                                           | Atmospheric pressure, Pa            |
| 304.8                                                                                                                    | 304                                                     | 304.8  | 304                                                                                             | Dispersing surface temp., K         |
| 0.82                                                                                                                     | 0.82                                                    | 0.803  | 0.795                                                                                           | Discharge liquid mass fraction      |
| 0.051                                                                                                                    | 0.079                                                   | 0.122  | 0.119                                                                                           | Drop diameter, mm                   |
| 90.3                                                                                                                     | 72.7                                                    | 59     | 60                                                                                              | Release velocity, m/s               |
| 2                                                                                                                        | 2                                                       | 3.36   | 3.36                                                                                            | Ref. Ht. for wind speed, m          |
| 2.46                                                                                                                     | 2.46                                                    | 16.19  | 16.19                                                                                           | Ref. Ht. for air temp, m            |
| 80                                                                                                                       | 160                                                     | 120    | 300                                                                                             | Averaging Time (s)                  |

Data for DT1 and DT2 are taken from SMEDIS<sup>11</sup> who provided post flash data. DT3 and DT4 post-flash velocity and liquid fraction are calculated using DISC / ATEX and the conservation of momentum method.
 All the cases predict rainout. The pool segment giving the largest vaporisation rate during the release was selected for version comparison

3) Bund temperature and surface temperature taken from Hanna's<sup>10</sup> report who specifies a soil temperature.



| Series                       | EEC        |
|------------------------------|------------|
| Substance                    | Propane    |
| Release type                 | Continuous |
| Release height, m            | 0.5        |
| Jet type                     | Horizontal |
| Dispersing surface           | Land       |
| Surface roughness length, m  | 0.006      |
| Solar flux, W/m <sup>2</sup> | 500        |

| EEC170 | EEC 360 | EEC 550 | EEC 560 |                                     |
|--------|---------|---------|---------|-------------------------------------|
| 2.9    | 0.11    | 3       | 3       | Release rate, kg/s                  |
| 160    | ) 50    | 150     | 360     | Duration, s                         |
| C      | ) D     | D       | С       | Stabiltiy class                     |
| 3.9    | ) 3.4   | 2.67    | 2.43    | Wind speed at reference height, m/s |
| 288.15 | 5 289   | 282.9   | 285     | Ambient temp., K                    |
| 0.55   | 5 0.7   | 0.99    | 1       | Relative humidity fraction          |
| 100000 | 100000  | 102500  | 100000  | Atmospheric pressure, Pa            |
| 288.15 | 5 289   | 282.9   | 285     | Dispersing surface temp., K         |
| 0.72   | 2 0.71  | 0.7     | 0.7     | Discharge liquid mass fraction      |
| 85.21  | 84.2    | 68.5    | 89.03   | Release velocity, m/s               |
| 3.3    | 3.3     | 6       | 6       | Reference height for wind speed, m  |
| 3.3    | 3.3     | 6       | 6       | Reference height. for air temp, m   |
| 0.04   | 0.057   | 0.04    | 0.041   | Drop diameter, mm                   |
| 60     | ) 50    | 150     | 100     | Averaging time (s)                  |

These data were provided as part of the SMEDIS<sup>11</sup> project. Droplet size was calculated using Phast<sup>xvii</sup> 1) 2)

The reference height for temperature was set to the reference height for wind speed. 3)

4) 5)

The surface temperature was set to the ambient temperature at the reference height. To bring the predictions in line with the SMEDIS results, the cut-off evaporation rate parameter was changed to 0.1 kg/s.

xvii Except for EEC170, where no pre-release conditions were available. Value assumed to be 40 µm, in line with other experiments; see Section 4.1.1. EEC170 also has no arc-wise maximum concentration data.



| Series                       | FLADIS     |
|------------------------------|------------|
| Substance                    | Ammonia    |
| Release type                 | Continuous |
| Release height, m            | 1.5        |
| Jet type                     | Horizontal |
| Dispersing surface           | Land       |
| Surface roughness length, m  | 0.04       |
| Solar flux, W/m <sup>2</sup> | 500        |

| FLADIS 9 | FLADIS 16 | FLADIS 24 |                                     |
|----------|-----------|-----------|-------------------------------------|
| 0.4      | 0.27      | 0.46      | Release rate, kg/s                  |
| 900      | 1140      | 600       | Duration, s                         |
| D        | E         | С         | Stabiltiy class                     |
| 5.6      | 4.4       | 5.03      | Wind speed at reference height, m/s |
| 288.7    | 290       | 291       | Ambient temp., K                    |
| 0.86     | 0.62      | 0.536     | Relative humidity fraction          |
| 102000   | 102000    | 101300    | Atmospheric pressure, Pa            |
| 288.7    | 290       | 291       | Dispersing surface temp., K         |
| 0.84     | 0.83      | 0.83      | Discharge liquid mass fraction      |
| 65.17    | 67.85     | 55.87     | Release velocity, m/s               |
| 10       | 10        | 10        | Reference height for wind speed, m  |
| 10       | 10        | 10        | Reference height. for air temp, m   |
| 0.0823   | 0.0772    | 0.114     | Drop diameter, mm                   |
| 600      | 600       | 400       | Averaging time (s)                  |

- These data were provided as part of the SMEDIS project
   For FLADIS16 the stability class was given as being D/E. This option is not available within the UDM, hence stability class E was taken as a conservative option.
- The reference height for temperature was set equal to the reference height for windspeed.
   The surface temperature was set to the temperature at the reference height.



| Input                  | Units | Value                             |
|------------------------|-------|-----------------------------------|
| Series                 |       | Goldfish                          |
| Substance              |       | Hydrogen Fluoride                 |
| Release type           |       | Horizontal, continuous, over land |
| Release height         | m     | 1.263                             |
| Surface roughness      | mm    | 0.2                               |
| Wind speed ref. height | m     | 2                                 |
| Air temp. ref height   | m     | 2                                 |
| Stability              |       | D                                 |
| Averaging time         | S     | 60                                |
| Air pressure           | Pa    | 101325                            |

| Input                            | Units | Goldfish 1 | Goldfish 2 | Goldfish 3 |
|----------------------------------|-------|------------|------------|------------|
| Release rate                     | Kg/s  | 27.13      | 10.26      | 10.07      |
| Duration                         | S     | 125        | 360        | 360        |
| Release velocity                 | m/s   | 41.1       | 41.7       | 42.2       |
| Release liq. Frac.               | Kg/kg | 0.86       | 0.88       | 0.87       |
| Wind speed                       | m/s   | 5.6        | 4.2        | 5.4        |
| Air temperature <sup>xviii</sup> | K     | 310.15     | 309.15     | 309.65     |
| Relative humidity                | frac  | 0.0562     | 0.126      | 0.35       |
| Droplet diameter                 | mm    | 0.117      | 0.111      | 0.113      |

Goldfish input data were obtained from McFarlane et al <sup>12</sup>
 The surface temperature was set to the temperature at the reference height.

xviii Surface temperature assumed same value



| SCRIPTION<br>LEASE DATA                                                                                                                                                                                                                                                                                                                   | Units                                                                        | Limits                  |                                                         |                                                                                                                                                                            |                                       |                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------|
| LEASE DATA                                                                                                                                                                                                                                                                                                                                | ••••••                                                                       |                         |                                                         | TI45                                                                                                                                                                       | TI47                                  | Notes (Ground-level horizontal Freon-12/Nitrogen release)                                          |
|                                                                                                                                                                                                                                                                                                                                           |                                                                              | Lower                   | Upper                                                   |                                                                                                                                                                            |                                       |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                           |                                                                              | Lower                   | opper                                                   |                                                                                                                                                                            |                                       |                                                                                                    |
| ation/segments                                                                                                                                                                                                                                                                                                                            |                                                                              |                         |                                                         |                                                                                                                                                                            |                                       |                                                                                                    |
| : instantaneous (1), continuous (2)                                                                                                                                                                                                                                                                                                       |                                                                              | 1                       | 2                                                       | 2                                                                                                                                                                          |                                       |                                                                                                    |
| aber of release segments (time-varying release only)                                                                                                                                                                                                                                                                                      |                                                                              | i                       | 11                                                      | 1                                                                                                                                                                          |                                       |                                                                                                    |
| ation of release segments (for non-instantaneous only)                                                                                                                                                                                                                                                                                    |                                                                              | 0                       | 3600                                                    | 455                                                                                                                                                                        | 465                                   |                                                                                                    |
| erial/mass/thermodynamics                                                                                                                                                                                                                                                                                                                 |                                                                              |                         |                                                         |                                                                                                                                                                            |                                       |                                                                                                    |
| ased material name (from material database)                                                                                                                                                                                                                                                                                               |                                                                              |                         |                                                         | FR12_N2                                                                                                                                                                    |                                       | mixture: 68% N2, 32% Freon-12 [CASID75-71-8; added via admin mode; set as inert]                   |
| al released mass                                                                                                                                                                                                                                                                                                                          | kg (inst) or kg/s (st)                                                       | 1.00E-01                |                                                         | 10.67                                                                                                                                                                      | 10.22                                 |                                                                                                    |
| al mass of air mixed in                                                                                                                                                                                                                                                                                                                   | kg (inst) or kg/s (st)                                                       | 1.002.01                | 1000000000                                              | 10.07                                                                                                                                                                      | 10.22                                 |                                                                                                    |
| al state descriptor [<0 liquid mass fraction (2-phase), >0 temperature (vapour)]                                                                                                                                                                                                                                                          |                                                                              | -1                      | 900                                                     | 286.25                                                                                                                                                                     | 287.45                                |                                                                                                    |
| plet size                                                                                                                                                                                                                                                                                                                                 | m                                                                            | -1                      | 1                                                       | 200.25                                                                                                                                                                     | 207.45                                |                                                                                                    |
| ase location/speed                                                                                                                                                                                                                                                                                                                        |                                                                              | 0                       | -                                                       | 0                                                                                                                                                                          |                                       |                                                                                                    |
| ase height                                                                                                                                                                                                                                                                                                                                | m                                                                            | 0                       |                                                         | 0                                                                                                                                                                          |                                       | Complex release geometry modelled as horizontal ground-level release                               |
| ase angle [0 = horizontal, pi/2 = vertical upwards; cont.only]                                                                                                                                                                                                                                                                            | radians                                                                      | -1.57                   | 1.571                                                   | 0                                                                                                                                                                          |                                       | complex release geometry modelled as nonitonial ground level release                               |
|                                                                                                                                                                                                                                                                                                                                           |                                                                              | -1                      | 1.571                                                   | 0                                                                                                                                                                          |                                       |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                           |                                                                              | 0                       | 500                                                     | 1 382885377                                                                                                                                                                | 1 324563                              | velocity (m/s) - ratio of snill rate(m3/s) and source area (diam 2m) [Phast density 2.456kg/m3]    |
|                                                                                                                                                                                                                                                                                                                                           |                                                                              | 0                       | 4                                                       | 1.502005577                                                                                                                                                                | 1.524505                              | relocity (113) - failo of spin faio(1153) and source area (dialitizin) [r has density 2.350kg/115] |
|                                                                                                                                                                                                                                                                                                                                           | 500)                                                                         | 0                       |                                                         |                                                                                                                                                                            |                                       |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                           |                                                                              | 1                       | 10                                                      | 9                                                                                                                                                                          | 9                                     | Using F for TI45 while database gives E-F (E-F cannot be selected in Phast)                        |
|                                                                                                                                                                                                                                                                                                                                           | m/s                                                                          | 0.1                     |                                                         |                                                                                                                                                                            |                                       |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                           |                                                                              |                         |                                                         |                                                                                                                                                                            | 1.0                                   |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                           |                                                                              |                         |                                                         |                                                                                                                                                                            | 287.45                                |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                           | N/m2                                                                         | 50000                   | 120000                                                  | 101325                                                                                                                                                                     |                                       | Assumed value - not measured                                                                       |
|                                                                                                                                                                                                                                                                                                                                           |                                                                              |                         |                                                         | 2                                                                                                                                                                          |                                       |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                           |                                                                              | 0                       | 1                                                       | 1                                                                                                                                                                          | 0.974                                 |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                           |                                                                              |                         |                                                         |                                                                                                                                                                            |                                       |                                                                                                    |
| ace roughness length                                                                                                                                                                                                                                                                                                                      | m                                                                            | 0.0001                  | 3                                                       | 0.01                                                                                                                                                                       |                                       |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                           |                                                                              | 1                       | 2                                                       | 1                                                                                                                                                                          |                                       |                                                                                                    |
| perature of dispersing surface                                                                                                                                                                                                                                                                                                            | К                                                                            | 200                     | 500                                                     | 285.95                                                                                                                                                                     | 287.65                                |                                                                                                    |
| DL DATA                                                                                                                                                                                                                                                                                                                                   |                                                                              |                         |                                                         |                                                                                                                                                                            |                                       |                                                                                                    |
| surface type (1-dry soil,2-wet soil, 3 - concrete, 4 - insulated concrete, 5 - dee                                                                                                                                                                                                                                                        | p                                                                            | 1                       | 9                                                       | 2                                                                                                                                                                          |                                       |                                                                                                    |
| perature of pool surface                                                                                                                                                                                                                                                                                                                  | K                                                                            | 0                       |                                                         | 285.95                                                                                                                                                                     | 287.65                                |                                                                                                    |
| d diameter (<= 0: no bund)                                                                                                                                                                                                                                                                                                                | m                                                                            | 0                       |                                                         | 0                                                                                                                                                                          |                                       |                                                                                                    |
| ERAGING TIME                                                                                                                                                                                                                                                                                                                              |                                                                              |                         |                                                         |                                                                                                                                                                            |                                       |                                                                                                    |
| raging time                                                                                                                                                                                                                                                                                                                               | S                                                                            | 1                       | 3600                                                    | 30                                                                                                                                                                         |                                       | 'Long' averaging time only                                                                         |
| RMINATION CRITERION                                                                                                                                                                                                                                                                                                                       |                                                                              |                         |                                                         |                                                                                                                                                                            |                                       |                                                                                                    |
| . concentration of interest                                                                                                                                                                                                                                                                                                               | mole %                                                                       | 0                       | 100                                                     | 0                                                                                                                                                                          |                                       |                                                                                                    |
| . distance of interest                                                                                                                                                                                                                                                                                                                    | m                                                                            | 0                       | 1.00E+08                                                | 472                                                                                                                                                                        |                                       |                                                                                                    |
| erening surface type (1-land,2-water)<br>perature of dispersing surface<br><b>J. DATA</b><br>surface type (1-dry soil,2-wet soil, 3 - concrete, 4 - insulated concrete, 5 - dee<br>perature of pool surface<br>d diameter (<=-0: no bund)<br><b>ERACING TIME</b><br>raging time<br><b>MINATION CRITERION</b><br>concentration of interest | m/s<br>m<br>K<br>N/m2<br>m<br>-<br>-<br>M<br>K<br>K<br>m<br>S<br>s<br>mole % | 0.1<br>0<br>0.0001<br>1 | 120000<br>100<br>1<br>3<br>2<br>500<br>9<br>3600<br>100 | 1.382885377<br>1.382885377<br>1<br>9<br>2.3<br>10<br>2286.25<br>2<br>101325<br>2<br>2<br>11<br>0.01<br>1<br>285.95<br>2<br>285.95<br>2<br>285.95<br>0<br>0<br>30<br>0<br>0 | 9<br>1.5<br>287.45<br>0.974<br>287.65 | Assumed value - not measured                                                                       |

## Table 28. UDM input data for Thorney Island experiments (continuous)

- 1) The release height is given as 0m, with diameter 2m, but the geometry of the release was complicated: a vertical pipe with a 2m diameter plate 0.5m above the surface to ensure low vertical momentum. It is not obvious how this should be modelled in Phast. We have chosen a very low momentum horizontal jet, with horizontal velocity *u* equal to the calculated source exit velocity assuming a pipe of diameter  $D_{source} = 2 \text{ m}$ :  $u = Q / (A\rho_v)$ . Here Q is the release rate (kg/s), A is the source area (= 0.25  $\pi D_{source}^2$ ) and  $\rho_v$  the vapour density of the Freon-12 / N<sub>2</sub> mixture. Receptor height has likewise been assumed to be ground level.
- density of the Freon-12 / N<sub>2</sub> mixture. Receptor height has likewise been assumed to be ground level.
  2) For TI45, the actual stability class is E-F, whereas in Phast one must choose either E or F. We have chosen F, but using F does not make very much difference with E especially down to the 1% or so concentration level.



0.751

291.7

0.9

0.75

0.9

292.1

| Series<br>Substance<br>Release typ<br>Initial air mix<br>Discharge lii<br>Disharge ter<br>Droplet dian<br>Release hei<br>Jet type | ked<br>quid mass<br>mperature,<br>neter, m |        | Maplin Sands<br>LPG (propane)<br>Continuous<br>0<br>231.1<br>1.00E-02<br>0<br>Horizontal | Ref. Ht. for<br>Ref. Ht. for | ughness ler<br>r wind speed<br>r air temp, n<br>ifford class<br>Pa | d, m   | Water<br>3.00E-04<br>10<br>10.1<br>D<br>101325<br>485 |                       |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------|------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------|--------|-------------------------------------------------------|-----------------------|
| Bund diame<br>Bund surfac                                                                                                         | ,                                          |        | 300<br>5                                                                                 |                              |                                                                    |        |                                                       |                       |
|                                                                                                                                   |                                            | MSP46  | MSP47                                                                                    | MSP49                        | MSP50                                                              | MSP52  | MSP54                                                 |                       |
| -                                                                                                                                 |                                            |        |                                                                                          |                              |                                                                    |        |                                                       |                       |
| 20.87                                                                                                                             | 19.2                                       | 23.37  | 32.57                                                                                    | 16.71                        |                                                                    |        | 19.2                                                  | Spill/evap rate, kg/s |
| 180                                                                                                                               | 330                                        | 360    | -                                                                                        | 90                           |                                                                    | -      |                                                       | Duration, s           |
| 0                                                                                                                                 | 0                                          | 0      | 0                                                                                        | 0                            | 0.5                                                                | 0      | 0                                                     | Expansion velocity, m |
| 14.9                                                                                                                              | 14.3                                       | 15.7   | 18.6                                                                                     | 13.3                         | 19.5                                                               | 21.7   | 14.3                                                  | Pool diameter, m      |
| 3.7                                                                                                                               | 5.5                                        | 8.1    | 5.6                                                                                      | 6.2                          | 7.9                                                                | 7.9    | 3.8                                                   | Wind speed, m/s       |
| 291.49                                                                                                                            | 290.12                                     | 291.86 | 290.57                                                                                   | 286.7                        | 283.66                                                             | 285.05 | 281.63                                                | Upper ambient temp.   |

Duration, s Expansion velocity, m/s, or e Pool diameter, m Wind speed, m/s Upper ambient temp., K Relative humidity fraction Soil temperature, K Receptor height, m

1) These experiments were not included in the PHMSA dataset.

0.71

290.5

0.9

2) We have used the MDA quoted release height of zero (unlike for the 7.1 simulation for the LNG experiments; ground-level spill)

0.88

0.9

286.2

0.79

0.9

283.1

0.63

0.9

285.1

0.85

0.5

282.6

3) Relative humidity for MSP42 and MSP43 were not included in the MDA

0.78

0.9

290.3

4) The cases are modelled as continuous spills at minimum release velocity (0.1 m/s) and with the maximum droplet diameter (0.01m)



## A.2 Instantaneous

| Series                        | Thorney Island - Instantaneous |
|-------------------------------|--------------------------------|
| Substance                     | Freon-12 + Nitrogen            |
| Release type                  | Instantaneous                  |
| Release height, m             | 0                              |
| Dispersing surface            | Land                           |
| Ref. height for wind speed, m | 10                             |
| Ref. height for air temp, m   | 2                              |
| Averaging time, s             | 10                             |
| Solar flux, W/m2              | 500                            |
| Expansion energy, J/kg        | 0                              |

| TI6    | TI7    | TI8    | TI9    | TI12   |                             |
|--------|--------|--------|--------|--------|-----------------------------|
| 1624   | 2388   | 2004   | 1900   | 4353   | Release mass, kg            |
| 1523   | 1861   | 1954   | 1966   | 1383   | Initial mass of air (kg)    |
| 291.83 | 290.46 | 290.68 | 291.45 | 283.29 | Release temperature, K      |
| 0.018  | 0.018  | 0.012  | 0.008  | 0.018  | Surface roughness length, m |
| D      | E      | D      | F      | E      | Stability class             |
| 2.8    | 3.4    | 2.4    | 1.7    | 2.5    | Wind speed, m/s             |
| 291.83 | 290.46 | 290.68 | 291.45 | 283.29 | Ambient temperature, K      |
| 0.748  | 0.807  | 0.876  | 0.873  | 0.662  | Relative humidity fraction  |
| 101325 | 102136 | 102237 | 101933 | 101325 | Atmospheric pressure, N/m2  |
| 291.83 | 290.46 | 290.68 | 291.45 | 283.29 | Surface temperature, K      |
| 0.21   | 0.24   | 0.21   | 0.2    | 0.44   | Mole fraction of Freon-12   |
| TI13   | TI17   | TI18   | TI19   |        |                             |
| 3148   |        | 2368   | 3797   |        | Release mass, kg            |
| 1652   |        | 1513   | 1680   |        | Initial mass of air (kg)    |
| 286.88 | -      | 289.66 | 286.51 |        | Release temperature, K      |
| 0.01   | 0.018  | 0.005  | 0.01   |        | Surface roughness length, m |

| 0.01   | 0.010  | 0.000  | 0.01   | Canado roagimedo longin, m |
|--------|--------|--------|--------|----------------------------|
| D      | D      | D      | D      | Stability class            |
| 7.3    | 5      | 7.4    | 6.4    | Wind speed, m/s            |
| 286.88 | 289.21 | 289.66 | 286.51 | Ambient temperature, K     |
| 0.741  | 0.94   | 0.813  | 0.948  | Relative humidity fraction |
| 101933 | 100818 | 100717 | 100616 | Atmospheric pressure, N/m2 |
| 286.88 | 289.21 | 289.66 | 286.51 | Surface temperature, K     |
| 0.32   | 1      | 0.28   | 0.36   | Mole fraction of Freon-12  |
|        |        |        |        |                            |

1) The experimental concentration data was multiplied throughout by the mole fraction of Freon in the release so that a direct comparison could be made with the UDM results.

2) The assumption of 0 J/kg for the expansion energy is a reasonable assumption as this is an unpressurised release.

3) The dispersing surface temperature was set to the temperature at the reference height.

4) Mole fraction of Freon-12 was calculated from the molecular weight for each experiment given in the MDA, but not used. Consistent with previous versions of this report (but unlike the Thorney Island continuous experiments) the material used is pure Freon-12 (CAS 75071-8).



## A.3 Pressurised CO<sub>2</sub> releases (BP and Shell experiments)

Key Phast discharge and dispersion input data

Table 29 summarises the key BP experimental data required as input to the Phast discharge models DISC (steady-state or initial rate) and TVDI (time-varying releases) and the UDM dispersion model. In this table the values of the storage pressure and the storage temperature are taken at the discharge end of the vessel (upstream of the pipework), with mean values during the release applied for the steady-state liquid releases and with initial values applied for the transient vapour releases. The ambient data were measured upwind of the release and mean values are adopted for these data during the release. This is with the exception of the wind-speed measurement taken 40m downwind of the release at 1.65m above the pad. Since this measurement was disturbed by the  $CO_2$  jet, the value listed in Table 29 corresponds to the mean value prior to the release.

| Input                           | Test1  | Test2  | Test3  | Test5  | Test6  | Test11 | Test8  | Test8R | Test9  | Input for models |
|---------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------------------|
| Discharge data                  |        |        |        |        |        |        |        |        |        |                  |
| steady-state/transient          | steady | steady | steady | steady | steady | steady | trans. | trans. | trans. | -                |
| storage phase                   | liquid | liquid | liquid | liquid | liquid | liquid | vapour | vapour | vapour | DISC, TVDI       |
| storage pressure (barg)         | 103.4  | 155.5  | 133.5  | 157.68 | 156.7  | 82.03  | 157.76 | 148.7  | 154.16 | DISC, TVDI       |
| storage temperature (°C)        | 5      | 7.84   | 11.02  | 9.12   | 9.48   | 17.44  | 147.12 | 149.37 | 69.17  | DISC, TVDI       |
| vessel volume (m <sup>3</sup> ) | -      | -      | -      | -      | -      | -      | 6.3    | 6.3    | 6.3    | TVDI             |
| orifice diameter (mm)           | 11.94  | 11.94  | 11.94  | 25.62  | 6.46   | 11.94  | 11.94  | 11.94  | 11.94  | DISC, TVDI       |
| orifice length (mm)             | 46.78  | 46.78  | 46.78  | 72.41  | 47.79  | 46.78  | 46.78  | 46.78  | 46.78  | -                |
| release duration (s)            | 60     | 59     | 60     | 40     | 120    | 58     | 120    | 132    | 179    | -                |
| Ambient data                    |        |        |        |        |        |        |        |        |        |                  |
| ambient temperature (°C)        | 14.2   | 7.5    | 10.6   | 5.8    | 6.1    | 11.6   | 11.19  | 11.1   | 8.2    | DISC, TVDI, UDM  |
| ambient pressure (mbara)        | 999.4  | 958.2  | 972.5  | 985.4  | 938.4  | 960.2  | 957.99 | 957.1  | 958.9  | DISC, TVDI, UDM  |
| relative humidity (%)           | 74.4   | 96     | 95.8   | 96.7   | 1      | 94     | 100    | 100    | 99.9   | DISC, TVDI, UDM  |
| wind direction (degrees)        | 322.4  | 265.6  | 288.8  | 278.6  | 299    | 270.8  | 269.3  | 270    | 270.7  | UDM uses 270°    |
| wind speed (m/s)                | 4      | 3.44   | 3.37   | 5.13   | 2.20   | 5.99   | 4.71   | 0.76   | 4.04   | UDM              |

## Table 29. Experimental conditions for BP CO<sub>2</sub> tests

| Input                                               | Test3          | Test5          | Test11       | Test1        | Test2        | Test4          | Test14         | Test16         | Input for models                                             |
|-----------------------------------------------------|----------------|----------------|--------------|--------------|--------------|----------------|----------------|----------------|--------------------------------------------------------------|
| Discharge data                                      |                |                |              |              |              |                |                |                |                                                              |
| steady-state/transient                              | steady         | steady         | steady       | trans.       | trans.       | trans.         | trans.         | trans.         | -                                                            |
| storage phase                                       | liquid         | liquid         | liquid       | liquid       | liquid       | liquid         | vapour         | vapour         | DISC,TVDI                                                    |
| storage pressure (barg)<br>nozzle pressure (barg)   | 147.3<br>144.8 | 148.8<br>126.4 | 81.9<br>80.3 | 148.3<br>143 | 147.1<br>118 | 148.2<br>148.2 | 151.6<br>147.7 | 150.6<br>146.0 | DISC,TVDI (either storage or<br>nozzle pressure is input)    |
| storage temperature (°C)<br>nozzle temperature (°C) | 9.8<br>8.2     | 17.8<br>13.7   | -0.2<br>-1.4 | 26.7<br>23   | 24.6<br>18   | 20.1<br>20.1   | 71<br>65.0     | 36.7<br>31.7   | DISC,TVDI (either storage or<br>nozzle temperature is input) |
| vessel volume (m <sup>3</sup> )                     | -              | -              | -            | 6.3          | 6.3          | 6.3            | 6.3            | 6.3            | TVDI                                                         |
| orifice diameter (mm)                               | 12.7           | 25.4           | 12.7         | 12.7         | 25.4         | 6.3            | 12.7           | 12.7           | DISC,TVDI                                                    |
| orifice length (mm)                                 | 47.78          | 46.84          | 47.78        | 47.78        | 46.84        | 47.79          | 47.78          | 47.78          | -                                                            |
| release duration (s)                                | 120            | 40             | 120          | 90           | 145          | >700           | 315            | 370            | -                                                            |
| Ambient data                                        |                |                |              |              |              |                |                |                |                                                              |
| ambient temperature (°C)                            | 11.2           | 9              | 3.6          | 14.7         | 10.3         | 13.8           | 0              | -2.9           | DISC, TVDI, UDM                                              |
| ambient pressure (mbara)                            | 1017           | 905            | 995          | 1006         | 1005         | 975.5          | 1005           | 997            | DISC,TVDI,UDM                                                |
| relative humidity (%)                               | 66             | 91             | 78           | 83           | 77           | 77             | 88             | 88             | DISC,TVDI,UDM                                                |
| wind direction (degrees)                            | 267            | 213            | 261          | 263          | 250          | 215            | 303            | 292            | UDM uses 270°                                                |
| wind speed (m/s)                                    | 4.05           | 1.30           | 2.76         | 3.93         | 5.43         | 1.98           | 1.34           | 1.48           | UDM                                                          |

### Table 30. Experimental conditions for Shell CO<sub>2</sub> tests

Likewise Table 30 summarises the key Shell experimental data required as input to the Phast models. In this table the values of the storage pressure and the storage temperature are taken at the discharge end of the vessel (upstream of the pipework) and the nozzle pressure/temperature are taken along the nozzle, with mean values during the release applied for the steady-state releases and with initial values applied for the transient releases. The wind speed data were taken from tower A [20m west (behind) and 5 meter south of release point] at 10 meter height (averaged prior to release) given anomalies observed at other measurement locations.

Furthermore, based on an analysis of the experimentally observed vertical wind-speed profiles a surface roughness of 0.1m and a stability class of D was assumed for all (BP and Shell) tests. Finally with respect to the wind direction it is noted that the release direction corresponds to 270°.

### MDA format



Data for the BP and Shell  $CO_2$  experiments have been included in the format of the MDA database by Witlox<sup>27,28</sup> and these data are given by Table 31 and Table 32.

The following further additional notes are given for Table 31 (BP tests):

Tests 1-3, 6, 11 were truly steady-state releases where the pressure was kept constant using a padding gas and therefore a reliable estimate of flow rate was obtained.

For the steady-state liquid tests the mean values of pressure and temperature at the vessel outlet (discharge end of the vessel) during the release are specified, while for the time-varying hot tests initial values are specified. Thus the specified exit gauge pressure may be too high for test 5, since for this test the pressure was not kept constant and frictional effects upstream of the orifice were important.

Tests 8, 8R, 9 were time-dependent releases, where the flow rate was accurately measured. The pressures listed in the table are initial pressures, while the reported flow rates in the table are averaged flow rates over the first twenty seconds.

The un-averaged peak concentrations have been based on ALL sensors, and any possible faulty sensors have not been excluded. The averaged maximum concentrations are based on 11-second averaged concentrations excluding faulty sensors. These observed estimates may be somewhat conservative since the maximum value over all times of the11-second averaged has been applied. Furthermore no further analysis has been carried out (e.g. via spline fitting of the measured values to obtain a better fit of the crosswind concentration profile and a better estimate of the maximum concentration) to further refine this maximum value.

The following further additional notes are given for Table 32 (Shell tests):

Tests 3,5,11 were truly steady-state releases where the pressure was kept constant using a padding gas. Tests 1, 2, 4 were time-varying releases from a vessel initially fully filled with pressurized liquid. Tests 14 and 16 were time-varying releases from a vessel initially filled with pressurized vapour (at supercritical temperature).

For the 1" tests 5 and 2 there was a significant pressure drop along the pipework between the vessel outlet and the nozzle. Therefore for the steady-state liquid tests mean nozzle values during the release are specified, while for the time-varying liquid tests initial nozzle values are specified. For the ½" vapour tests 14 and16 the initial vessel outlet values are specified.

Servomex and Draeger sensors were only positioned at limited locations and therefore these have not been used.  $O_2$  sensors showed an erroneous drop with time in the near-field, and therefore averaged values for the  $O_2$  sensors have not been used. Thus the maximum value of the peak values for the  $O_2$  sensors located at a given downstream distance have been used to determine the measured peak concentration at a given downstream distance. No further analysis has been carried out (e.g. via spline fitting of the measured values to obtain a better fit of the crosswind concentration profile and a better estimate of the maximum concentration) to further refine this maximum value.



| MIDA                                                                                                                    | TVADIAD                                                                                                                       |                                                                                                                          |                                                                                                              | 1                                                                                                                              |                                                                                                                              |                                                                                                                                | -                                                                                                                       |                                                                                                      |    | MEANING INDUT VADIABLE                                                                                                                                                                                                                                                                                                                                                                                         | REFERENCE (ADDITIONAL NOTE                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MDA INPU<br>BP DF1 C02                                                                                                  |                                                                                                                               |                                                                                                                          | ases Snad                                                                                                    | eAdam                                                                                                                          |                                                                                                                              |                                                                                                                                |                                                                                                                         |                                                                                                      | -  | MEANING INPUT VARIABLE Name of field experiments                                                                                                                                                                                                                                                                                                                                                               | REFERENCE / ADDITIONAL NOTE                                                                                                                                                                        |
| Carbon Dio                                                                                                              |                                                                                                                               | uneiureie                                                                                                                | ases, spau                                                                                                   | EAudin                                                                                                                         |                                                                                                                              |                                                                                                                                |                                                                                                                         |                                                                                                      |    | Chemical released                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                    |
| CO2                                                                                                                     | Alde                                                                                                                          |                                                                                                                          |                                                                                                              |                                                                                                                                |                                                                                                                              |                                                                                                                                |                                                                                                                         |                                                                                                      | :  | 3-char. abbreviation of chemical                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                    |
| 9                                                                                                                       |                                                                                                                               |                                                                                                                          |                                                                                                              |                                                                                                                                |                                                                                                                              |                                                                                                                                |                                                                                                                         |                                                                                                      | :  | number of trials included in MDA                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                    |
| ?                                                                                                                       |                                                                                                                               |                                                                                                                          |                                                                                                              |                                                                                                                                |                                                                                                                              |                                                                                                                                |                                                                                                                         |                                                                                                      | :  | time zone designation                                                                                                                                                                                                                                                                                                                                                                                          | ??? To apply GMT time                                                                                                                                                                              |
| CO2BP1                                                                                                                  | C02BP2                                                                                                                        | CO2BP3                                                                                                                   | C02BP5                                                                                                       | CO2BP6                                                                                                                         | CO2BP11                                                                                                                      | CO2BP8                                                                                                                         | CO2BPR                                                                                                                  | CO2BP9                                                                                               | :  | trial ID                                                                                                                                                                                                                                                                                                                                                                                                       | tests: steady liquid (1,2,3,5,6,11), transient vapour (8,8R,9)                                                                                                                                     |
| 1                                                                                                                       | 21                                                                                                                            | 28                                                                                                                       | 16                                                                                                           | 7                                                                                                                              | 20                                                                                                                           | 17                                                                                                                             | 22                                                                                                                      | 16                                                                                                   | :  | day                                                                                                                                                                                                                                                                                                                                                                                                            | Advantica report - Appendix A,B,C,E,F,L,H,I,J                                                                                                                                                      |
| 11                                                                                                                      | 11                                                                                                                            | 11                                                                                                                       | 12                                                                                                           | 12                                                                                                                             | 11                                                                                                                           | 11                                                                                                                             | 11                                                                                                                      | 11                                                                                                   |    | month                                                                                                                                                                                                                                                                                                                                                                                                          | Advantica report - Appendix A,B,C,E,F,L,H,I,J                                                                                                                                                      |
| 2006                                                                                                                    | 2006                                                                                                                          | 2006                                                                                                                     | 2006                                                                                                         | 2006                                                                                                                           | 2006                                                                                                                         | 2006                                                                                                                           | 2006                                                                                                                    | 2006                                                                                                 |    | year                                                                                                                                                                                                                                                                                                                                                                                                           | Advantica report - Appendix A,B,C,E,F,L,H,I,J                                                                                                                                                      |
| 12                                                                                                                      | 16                                                                                                                            | 14                                                                                                                       | 13                                                                                                           | 16                                                                                                                             | 16                                                                                                                           | 15                                                                                                                             | 14                                                                                                                      | 14                                                                                                   |    | hour                                                                                                                                                                                                                                                                                                                                                                                                           | Advantica report - Appendix A,B,C,E,F,L,H,I,J                                                                                                                                                      |
| 39                                                                                                                      | 3                                                                                                                             | 50                                                                                                                       | 28                                                                                                           | 2                                                                                                                              | 30                                                                                                                           | 20                                                                                                                             | 15                                                                                                                      | 0                                                                                                    |    | minute                                                                                                                                                                                                                                                                                                                                                                                                         | Advantica report - Appendix A,B,C,E,F,L,H,I,J                                                                                                                                                      |
| 44.01                                                                                                                   | 44.01                                                                                                                         | 44.01                                                                                                                    | 44.01                                                                                                        | 44.01                                                                                                                          | 44.01                                                                                                                        | 44.01                                                                                                                          | 44.01                                                                                                                   | 44.01                                                                                                |    | mol. weight (g/mole)                                                                                                                                                                                                                                                                                                                                                                                           | Property as in MDA KitFox for CO2                                                                                                                                                                  |
| 186.25                                                                                                                  | 186.25                                                                                                                        | 186.25                                                                                                                   | 186.25                                                                                                       | 186.25                                                                                                                         | 186.25                                                                                                                       | 186.25                                                                                                                         | 186.25                                                                                                                  | 186.25                                                                                               |    | normal boiling point (K)                                                                                                                                                                                                                                                                                                                                                                                       | Property as in MDA KitFox for CO2                                                                                                                                                                  |
| 154749                                                                                                                  | 154749                                                                                                                        | 154749                                                                                                                   | 154749                                                                                                       | 154749                                                                                                                         | 154749                                                                                                                       | 154749                                                                                                                         | 154749                                                                                                                  | 154749                                                                                               |    | latent heat of evaporation (J/kg) at 20C                                                                                                                                                                                                                                                                                                                                                                       | Property as in MDA KitFox for CO2                                                                                                                                                                  |
| 839.3<br>4118.8                                                                                                         | 839.3<br>4118.8                                                                                                               | 839.3<br>4118.8                                                                                                          | 839.3<br>4118.8                                                                                              | 839.3<br>4118.8                                                                                                                | 839.3<br>4118.8                                                                                                              | 839.3<br>4118.8                                                                                                                | 839.3<br>4118.8                                                                                                         | 839.3<br>4118.8                                                                                      |    | specific heat - vapor (J/kg-K) at 20C                                                                                                                                                                                                                                                                                                                                                                          | Property as in MDA KitFox for CO2<br>Property as in MDA KitFox for CO2                                                                                                                             |
| 773.3                                                                                                                   | 773.3                                                                                                                         | 773.3                                                                                                                    | 773.3                                                                                                        | 773.3                                                                                                                          | 773.3                                                                                                                        | 773.3                                                                                                                          | 773.3                                                                                                                   | 773.3                                                                                                |    | specific heat - liquid (J/kg-K) at 20C<br>density of liquid (kg/m**3) at 20C                                                                                                                                                                                                                                                                                                                                   | Property as in MDA KitFox for CO2                                                                                                                                                                  |
| -1                                                                                                                      | -1                                                                                                                            | -1                                                                                                                       | -1                                                                                                           | -1                                                                                                                             | -1                                                                                                                           | -1                                                                                                                             | -1                                                                                                                      | -1                                                                                                   |    | coefficient A for vapor pressure equation                                                                                                                                                                                                                                                                                                                                                                      | ?? Suggest use DIPPR formula (vapour/solid vapour pressure)                                                                                                                                        |
| 0                                                                                                                       | 0                                                                                                                             | 0                                                                                                                        | 0                                                                                                            | 0                                                                                                                              | 0                                                                                                                            | 0                                                                                                                              | 0                                                                                                                       | 0                                                                                                    |    | coefficient B for vapor pressure equation                                                                                                                                                                                                                                                                                                                                                                      | ?? Suggest use DIPPR formula (vapour/solid vapour pressure)                                                                                                                                        |
| 103.40                                                                                                                  | 155.50                                                                                                                        | 133.50                                                                                                                   | 157.68                                                                                                       | 156.72                                                                                                                         | 82.03                                                                                                                        | 157.76                                                                                                                         | 148.72                                                                                                                  | 154.16                                                                                               |    | exit gauge pressure (bar)                                                                                                                                                                                                                                                                                                                                                                                      | mean (steady tests) or initial (transient tests) at vessel outlet                                                                                                                                  |
| 278.15                                                                                                                  | 280.99                                                                                                                        | 284.171                                                                                                                  | 282.27                                                                                                       | 282.6252                                                                                                                       | 290.59                                                                                                                       | 420.27                                                                                                                         | 422.52                                                                                                                  | 342.32                                                                                               |    | source temperature (K)                                                                                                                                                                                                                                                                                                                                                                                         | mean (steady tests) or initial (transient tests) at vessel outlet                                                                                                                                  |
| 1.19E-02                                                                                                                | 1.19E-02                                                                                                                      | 1.19E-02                                                                                                                 | 2.56E-02                                                                                                     | 6.46E-03                                                                                                                       | 1.19E-02                                                                                                                     | 1.19E-02                                                                                                                       | 1.19E-02                                                                                                                | 1.19E-02                                                                                             |    | source diameter (m)                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                    |
| 1.1                                                                                                                     | 1.1                                                                                                                           | 1.1                                                                                                                      | 1.1                                                                                                          | 1.1                                                                                                                            | 1.1                                                                                                                          | 1.1                                                                                                                            | 1.1                                                                                                                     | 1.1                                                                                                  | :  | source elevation (m)                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    |
| HJ                                                                                                                      | HJ                                                                                                                            | нј                                                                                                                       | нJ                                                                                                           | нJ                                                                                                                             | нј                                                                                                                           | нј                                                                                                                             |                                                                                                                         | HJ                                                                                                   |    | source type (IR,HJ,AS,EP)                                                                                                                                                                                                                                                                                                                                                                                      | Horizontal jet (HJ)                                                                                                                                                                                |
|                                                                                                                         | L                                                                                                                             | L                                                                                                                        |                                                                                                              |                                                                                                                                |                                                                                                                              | G                                                                                                                              |                                                                                                                         | G                                                                                                    | :  | source phase (L,C,G)                                                                                                                                                                                                                                                                                                                                                                                           | Liquid (L) or gas (G)                                                                                                                                                                              |
| -99.9                                                                                                                   | -99.9                                                                                                                         | -99.9                                                                                                                    | -99.9                                                                                                        | -99.9                                                                                                                          | -99.9                                                                                                                        | -99.9                                                                                                                          | -99.9                                                                                                                   | -99.9                                                                                                |    | source containment diameter (m)                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                    |
| 8.2                                                                                                                     | 11.41                                                                                                                         | 9.987826                                                                                                                 | 41.17                                                                                                        | 3.5                                                                                                                            | 7.12                                                                                                                         | 4.07                                                                                                                           | 3.8                                                                                                                     | 6.05                                                                                                 |    | spill/evaporation rate (kg/s)                                                                                                                                                                                                                                                                                                                                                                                  | 8, 8R, 9 are time-varying releases (averaged rate taken over first 20                                                                                                                              |
| 59                                                                                                                      | 59                                                                                                                            | 60                                                                                                                       | 40                                                                                                           | 120                                                                                                                            | 58                                                                                                                           | 120                                                                                                                            | 132                                                                                                                     | 179                                                                                                  |    | spill duration (s)                                                                                                                                                                                                                                                                                                                                                                                             | 8, 8R, 9 are time-varying releases                                                                                                                                                                 |
| -99.9                                                                                                                   | -99.9                                                                                                                         | -99.9                                                                                                                    | -99.9                                                                                                        | -99.9                                                                                                                          | -99.9                                                                                                                        | -99.9                                                                                                                          | -99.9                                                                                                                   | -99.9                                                                                                |    | total released (kg)                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                    |
| 1.00E+06                                                                                                                | 1.00E+06                                                                                                                      | 1.00E+06                                                                                                                 | 1.00E+06                                                                                                     | 1.00E+06                                                                                                                       | 1.00E+06                                                                                                                     | 1.00E+06                                                                                                                       | 1.00E+06                                                                                                                | 1.00E+06                                                                                             |    | initial concentration (ppm)                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |
| 0.9994                                                                                                                  | 0.9582                                                                                                                        | 0.9725                                                                                                                   | 0.9854                                                                                                       | 0.9384                                                                                                                         | 0.9602                                                                                                                       | 0.95799                                                                                                                        | 0.9571                                                                                                                  | 0.9589                                                                                               |    | ambient pressure (bar)                                                                                                                                                                                                                                                                                                                                                                                         | Advantica report - Appendix A,B,C,E,F,L,H,I,J (except Test 8 - Leng)                                                                                                                               |
| 74.4                                                                                                                    | 96                                                                                                                            | 95.8                                                                                                                     | 96.7                                                                                                         | 100                                                                                                                            | 94                                                                                                                           | 100                                                                                                                            | 100                                                                                                                     | 99.9                                                                                                 |    | relative humidity (%)                                                                                                                                                                                                                                                                                                                                                                                          | Advantica report - Appendix A,B,C,E,F,L,H,I,J                                                                                                                                                      |
| 287.35                                                                                                                  | 280.65                                                                                                                        | 283.75                                                                                                                   | 278.95                                                                                                       | 279.25                                                                                                                         | 284.75                                                                                                                       | 284.34                                                                                                                         | 284.25                                                                                                                  | 281.35                                                                                               |    | ambient temperature #1-lower (K)                                                                                                                                                                                                                                                                                                                                                                               | Advantica report - Appendix A,B,C,E,F,L,H,I,J (except Test 8 - Leng)                                                                                                                               |
| 0<br>-99.9                                                                                                              | 0<br>-99.9                                                                                                                    | 0<br>-99.9                                                                                                               | -99.9                                                                                                        | 0<br>-99.9                                                                                                                     | 0<br>-99.9                                                                                                                   | 0<br>-99.9                                                                                                                     | 0<br>-99.9                                                                                                              | 0<br>-99.9                                                                                           |    | measurement height for temperature #1 (m)                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                    |
| -99.9                                                                                                                   | -99.9                                                                                                                         | -99.9                                                                                                                    | -99.9                                                                                                        | -99.9                                                                                                                          | -99.9                                                                                                                        | -99.9                                                                                                                          | -99.9                                                                                                                   | -99.9                                                                                                |    | ambient temperature #2-upper (K)<br>measurement height for temperature #2 (m)                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                    |
| 285.35                                                                                                                  | 278.65                                                                                                                        | 281.75                                                                                                                   | 276.95                                                                                                       | 277.25                                                                                                                         | 282.75                                                                                                                       | 282.34                                                                                                                         | 282.25                                                                                                                  | 279.35                                                                                               |    | soil temperature (K)                                                                                                                                                                                                                                                                                                                                                                                           | Following BP advice, assumed to be 2 degrees lower than ambient                                                                                                                                    |
| 285.35                                                                                                                  | 278.03                                                                                                                        | 201.75                                                                                                                   | 270.95                                                                                                       | 277.23                                                                                                                         | 202.75                                                                                                                       | 202.34                                                                                                                         | 202.23                                                                                                                  | 275.55                                                                                               |    | soil moisture (1:dry,2:moist,3:water)                                                                                                                                                                                                                                                                                                                                                                          | Following be advice, assumed to be 2 degrees lower than ambient                                                                                                                                    |
| 4                                                                                                                       | 3.44                                                                                                                          | 3.37                                                                                                                     | 5.13                                                                                                         | 2.2                                                                                                                            | 5.99                                                                                                                         | 4.71                                                                                                                           | 0.76                                                                                                                    | 4.04                                                                                                 |    | wind speed (m/s)                                                                                                                                                                                                                                                                                                                                                                                               | Windspeed at 40m distance; average value before start release                                                                                                                                      |
| 1.65                                                                                                                    | 1.65                                                                                                                          | 1.65                                                                                                                     | 1.65                                                                                                         | 1.65                                                                                                                           | 1.65                                                                                                                         | 1.65                                                                                                                           | 1.65                                                                                                                    | 1.65                                                                                                 |    | measurement height for wind speed (m)                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                    |
| -99.9                                                                                                                   | -99.9                                                                                                                         | -99.9                                                                                                                    | -99.9                                                                                                        | -99.9                                                                                                                          | -99.9                                                                                                                        | -99.9                                                                                                                          | -99.9                                                                                                                   | -99.9                                                                                                |    | domain-avg wind speed (m/s)                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |
| -99.9                                                                                                                   | -99.9                                                                                                                         | -99.9                                                                                                                    | -99.9                                                                                                        | -99.9                                                                                                                          | -99.9                                                                                                                        | -99.9                                                                                                                          | -99.9                                                                                                                   | -99.9                                                                                                | :  | domain-avg sigma-u (m/s)                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                    |
| -99.9                                                                                                                   | -99.9                                                                                                                         | -99.9                                                                                                                    | -99.9                                                                                                        | -99.9                                                                                                                          | -99.9                                                                                                                        | -99.9                                                                                                                          | -99.9                                                                                                                   | -99.9                                                                                                | :  | domain-avg sigma-theta (deg)                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                    |
| -99.9                                                                                                                   | -99.9                                                                                                                         | -99.9                                                                                                                    | -99.9                                                                                                        | -99.9                                                                                                                          | -99.9                                                                                                                        | -99.9                                                                                                                          | -99.9                                                                                                                   | -99.9                                                                                                | :  | measurement ht for domain-avg wind data (m)                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |
| ?                                                                                                                       | ?                                                                                                                             | ?                                                                                                                        | ?                                                                                                            | ?                                                                                                                              | ?                                                                                                                            | ?                                                                                                                              | ?                                                                                                                       | ?                                                                                                    | :  | averaging time for wind and temperature data (s)                                                                                                                                                                                                                                                                                                                                                               | to check                                                                                                                                                                                           |
| 0.1                                                                                                                     | 0.1                                                                                                                           | 0.1                                                                                                                      | 0.1                                                                                                          | 0.1                                                                                                                            | 0.1                                                                                                                          | 0.1                                                                                                                            | 0.1                                                                                                                     | 0.1                                                                                                  | :  | roughness length z0 (m)                                                                                                                                                                                                                                                                                                                                                                                        | presumed                                                                                                                                                                                           |
| -99.9                                                                                                                   | -99.9                                                                                                                         | -99.9                                                                                                                    | -99.9                                                                                                        | -99.9                                                                                                                          | -99.9                                                                                                                        | -99.9                                                                                                                          | -99.9                                                                                                                   | -99.9                                                                                                | :  | friction velocity u-star (m/s)                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                    |
| -99.9                                                                                                                   | -99.9                                                                                                                         | -99.9                                                                                                                    | -99.9                                                                                                        | -99.9                                                                                                                          | -99.9                                                                                                                        | -99.9                                                                                                                          | -99.9                                                                                                                   | -99.9                                                                                                | :  | bowen ratio estimate                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    |
| -99.9                                                                                                                   | -99.9                                                                                                                         | -99.9                                                                                                                    | -99.9                                                                                                        | -99.9                                                                                                                          | -99.9                                                                                                                        | -99.9                                                                                                                          | -99.9                                                                                                                   | -99.9                                                                                                |    | inverse Monin-Obukhov length (1/m)                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                    |
|                                                                                                                         |                                                                                                                               |                                                                                                                          |                                                                                                              |                                                                                                                                |                                                                                                                              |                                                                                                                                |                                                                                                                         | ?                                                                                                    | :  | cloud cover (%)                                                                                                                                                                                                                                                                                                                                                                                                | ??? To check                                                                                                                                                                                       |
| 4                                                                                                                       | 4                                                                                                                             | 4                                                                                                                        | 4                                                                                                            | 4                                                                                                                              | 4                                                                                                                            | 4                                                                                                                              | 4                                                                                                                       | 4                                                                                                    | :  | Pasquill-Gifford stability class (A=1;D=4;F=6)                                                                                                                                                                                                                                                                                                                                                                 | Assumed D                                                                                                                                                                                          |
|                                                                                                                         |                                                                                                                               |                                                                                                                          |                                                                                                              |                                                                                                                                |                                                                                                                              |                                                                                                                                |                                                                                                                         | ?<br>?                                                                                               |    | latitude (deg)                                                                                                                                                                                                                                                                                                                                                                                                 | ??? To apply SpadeAdam location                                                                                                                                                                    |
| r<br>1                                                                                                                  | r<br>1                                                                                                                        | <u>ر</u>                                                                                                                 | ۰<br>1                                                                                                       | ۲<br>1                                                                                                                         | ،<br>1                                                                                                                       | ۰<br>1                                                                                                                         |                                                                                                                         | r<br>1                                                                                               |    | longitude (deg)                                                                                                                                                                                                                                                                                                                                                                                                | ??? To apply SpadeAdam location                                                                                                                                                                    |
| 11                                                                                                                      | 11                                                                                                                            |                                                                                                                          | 11                                                                                                           |                                                                                                                                |                                                                                                                              |                                                                                                                                | 1                                                                                                                       | 11                                                                                                   |    | averaging time for peak concentration (s)                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                    |
| -99.9                                                                                                                   | -99.9                                                                                                                         | -99.9                                                                                                                    | -99.9                                                                                                        | -99.9                                                                                                                          | -99.9                                                                                                                        | -99.9                                                                                                                          | -99.9                                                                                                                   | -99.9                                                                                                |    | averaging time for averaged concentration (s)<br>concentration of interest for modeling (ppm)                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                    |
| -99.9                                                                                                                   | -99.9                                                                                                                         | -99.9                                                                                                                    | -99.9                                                                                                        | -99.9                                                                                                                          | -99.9                                                                                                                        | -99.9                                                                                                                          | -99.9                                                                                                                   | 35.9                                                                                                 |    | suggested receptor height for modeling (m)                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                    |
| 4                                                                                                                       | 4                                                                                                                             | 4                                                                                                                        | 4                                                                                                            | 4                                                                                                                              | 4                                                                                                                            | 4                                                                                                                              | 4                                                                                                                       | 4                                                                                                    |    | number of distances downwind                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                    |
| 5                                                                                                                       | 5                                                                                                                             | 5                                                                                                                        | 5                                                                                                            | 5                                                                                                                              | 5                                                                                                                            | 5                                                                                                                              | 5                                                                                                                       | 5                                                                                                    |    | distance downwind (m)                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                    |
| 10                                                                                                                      | 10                                                                                                                            | 10                                                                                                                       | 10                                                                                                           | 10                                                                                                                             |                                                                                                                              | 10                                                                                                                             | 10                                                                                                                      | 10                                                                                                   |    | distance downwind (m)                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                    |
| 15                                                                                                                      | 15                                                                                                                            | 15                                                                                                                       | 15                                                                                                           | 15                                                                                                                             | 15                                                                                                                           | 15                                                                                                                             | 15                                                                                                                      | 15                                                                                                   |    | distance downwind (m)                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                    |
| 20                                                                                                                      | 20                                                                                                                            | 20                                                                                                                       | 20                                                                                                           | 20                                                                                                                             | 20                                                                                                                           | 20                                                                                                                             | 20                                                                                                                      | 20                                                                                                   |    | distance downwind (m)                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                    |
| 40                                                                                                                      | 40                                                                                                                            | 40                                                                                                                       | 40                                                                                                           | 40                                                                                                                             | 40                                                                                                                           | 40                                                                                                                             | 40                                                                                                                      | 40                                                                                                   | :  | distance downwind (m)                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                    |
| 60                                                                                                                      | 60                                                                                                                            | 60                                                                                                                       | 60                                                                                                           | 60                                                                                                                             | 60                                                                                                                           | 60                                                                                                                             | 60                                                                                                                      | 60                                                                                                   | :  | distance downwind (m)                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                    |
| 80                                                                                                                      | 80                                                                                                                            | 80                                                                                                                       | 80                                                                                                           | 80                                                                                                                             | 80                                                                                                                           | 80                                                                                                                             | 80                                                                                                                      | 80                                                                                                   | :  | distance downwind (m)                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                    |
| 22.22                                                                                                                   | 27.98                                                                                                                         | 50.05779                                                                                                                 | -99.9                                                                                                        | 21.99                                                                                                                          | 21.88                                                                                                                        |                                                                                                                                | 8.813                                                                                                                   | 15.58                                                                                                |    | max. conc. (mol %) based on tpeak                                                                                                                                                                                                                                                                                                                                                                              | All sensors; Original MDA uses ppm instead of mol%                                                                                                                                                 |
| 7.10                                                                                                                    | 13.69                                                                                                                         | 16.054                                                                                                                   | -99.9                                                                                                        | 8.5271                                                                                                                         | 9.19                                                                                                                         | 4.061425                                                                                                                       | 4.0978                                                                                                                  | 7.16                                                                                                 |    | max. conc. (mol %) based on tpeak                                                                                                                                                                                                                                                                                                                                                                              | All sensors                                                                                                                                                                                        |
| 3.10                                                                                                                    | 9.02                                                                                                                          | 9.598                                                                                                                    | -99.9                                                                                                        | 4.7239                                                                                                                         | 5.53                                                                                                                         | 2.987029                                                                                                                       | 2.7901                                                                                                                  | 5.12                                                                                                 |    | max. conc. (mol %) based on tpeak                                                                                                                                                                                                                                                                                                                                                                              | All sensors                                                                                                                                                                                        |
|                                                                                                                         | 6.79                                                                                                                          | 6.4985                                                                                                                   | 14.244                                                                                                       | 4.5924                                                                                                                         | 4.02                                                                                                                         | 2.950585                                                                                                                       | 2.391                                                                                                                   | 3.68                                                                                                 |    | max. conc. (mol %) based on tpeak                                                                                                                                                                                                                                                                                                                                                                              | All Sensors                                                                                                                                                                                        |
| 5.32                                                                                                                    |                                                                                                                               | 7.143774                                                                                                                 | 15.496                                                                                                       | 5.3699                                                                                                                         | 4.82                                                                                                                         | 2.563892                                                                                                                       | 4.3929                                                                                                                  | 4.99                                                                                                 |    | max. conc. (mol %) based on tpeak                                                                                                                                                                                                                                                                                                                                                                              | All sensors                                                                                                                                                                                        |
| -99.9                                                                                                                   | 6.12                                                                                                                          |                                                                                                                          |                                                                                                              |                                                                                                                                |                                                                                                                              |                                                                                                                                | -99.9                                                                                                                   | -99.9                                                                                                |    | max. conc. (mol %) based on tpeak                                                                                                                                                                                                                                                                                                                                                                              | All sensors                                                                                                                                                                                        |
| -99.9<br>-99.9                                                                                                          | 6.12<br>-99.9                                                                                                                 | 5.0102                                                                                                                   | 8.8944                                                                                                       | -99.9                                                                                                                          | -99.9                                                                                                                        | -99.9                                                                                                                          |                                                                                                                         |                                                                                                      | •  |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                    |
| -99.9<br>-99.9<br>-99.9                                                                                                 | 6.12<br>-99.9<br>-99.9                                                                                                        | 5.0102<br>2.774052                                                                                                       | 6.3711                                                                                                       | -99.9                                                                                                                          | -99.9                                                                                                                        | -99.9                                                                                                                          | -99.9                                                                                                                   | -99.9                                                                                                |    | max. conc. (mol %) based on tpeak                                                                                                                                                                                                                                                                                                                                                                              | All sensors                                                                                                                                                                                        |
| -99.9<br>-99.9<br>-99.9<br>21.14                                                                                        | 6.12<br>-99.9<br>-99.9<br>27.46918                                                                                            | 5.0102<br>2.774052<br>37.1426                                                                                            | 6.3711<br>-99.9                                                                                              | -99.9<br>20.77245                                                                                                              | -99.9<br>21.146655                                                                                                           | -99.9<br>8.37158                                                                                                               | 7.705936                                                                                                                | 15.03                                                                                                | :  | max. conc. (mol %) based on tavg                                                                                                                                                                                                                                                                                                                                                                               | Excluding non-trusted sensors                                                                                                                                                                      |
| -99.9<br>-99.9<br>-99.9<br>21.14<br>6.23                                                                                | 6.12<br>-99.9<br>-99.9<br>27.46918<br>12.93045                                                                                | 5.0102<br>2.774052<br>37.1426<br>15.167                                                                                  | 6.3711<br>-99.9<br>-99.9                                                                                     | -99.9<br>20.77245<br>7.978891                                                                                                  | -99.9<br>21.146655<br>8.3783636                                                                                              | -99.9<br>8.37158<br>3.492025                                                                                                   | 7.705936<br>3.287882                                                                                                    | 15.03<br>6.38                                                                                        | :  | max. conc. (mol %) based on tavg<br>max. conc. (mol %) based on tavg                                                                                                                                                                                                                                                                                                                                           | Excluding non-trusted sensors<br>Excluding non-trusted sensors                                                                                                                                     |
| -99.9<br>-99.9<br>-99.9<br>21.14<br>6.23<br>2.27                                                                        | 6.12<br>-99.9<br>-99.9<br>27.46918<br>12.93045<br>8.2248                                                                      | 5.0102<br>2.774052<br>37.1426<br>15.167<br>8.8559                                                                        | 6.3711<br>-99.9<br>-99.9<br>-99.9                                                                            | -99.9<br>20.77245<br>7.978891<br>4.200045                                                                                      | -99.9<br>21.146655<br>8.3783636<br>4.1569909                                                                                 | -99.9<br>8.37158<br>3.492025<br>2.119683                                                                                       | 7.705936<br>3.287882<br>2.215382                                                                                        | 15.03<br>6.38<br>4.29                                                                                | :: | max. conc. (mol %) based on tavg<br>max. conc. (mol %) based on tavg<br>max. conc. (mol %) based on tavg                                                                                                                                                                                                                                                                                                       | Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors                                                                                                    |
| -99.9<br>-99.9<br>-99.9<br>21.14<br>6.23<br>2.27<br>4.53                                                                | 6.12<br>-99.9<br>-99.9<br>27.46918<br>12.93045<br>8.2248<br>5.685891                                                          | 5.0102<br>2.774052<br>37.1426<br>15.167<br>8.8559<br>5.905018                                                            | 6.3711<br>-99.9<br>-99.9<br>-99.9<br>13.86173                                                                | -99.9<br>20.77245<br>7.978891<br>4.200045<br>3.083936                                                                          | -99.9<br>21.146655<br>8.3783636<br>4.1569909<br>3.0273545                                                                    | -99.9<br>8.37158<br>3.492025<br>2.119683<br>1.99604                                                                            | 7.705936<br>3.287882<br>2.215382<br>1.712187                                                                            | 15.03<br>6.38<br>4.29<br>2.90                                                                        | :: | max. conc. (mol %) based on tavg<br>max. conc. (mol %) based on tavg<br>max. conc. (mol %) based on tavg<br>max. conc. (mol %) based on tavg                                                                                                                                                                                                                                                                   | Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors                                                                   |
| -99.9<br>-99.9<br>21.14<br>6.23<br>2.27<br>4.53<br>-99.9                                                                | 6.12<br>-99.9<br>-99.9<br>27.46918<br>12.93045<br>8.2248<br>5.685891<br>3.582927                                              | 5.0102<br>2.774052<br>37.1426<br>15.167<br>8.8559<br>5.905018<br>3.220491                                                | 6.3711<br>-99.9<br>-99.9<br>-99.9<br>13.86173<br>8.615255                                                    | -99.9<br>20.77245<br>7.978891<br>4.200045<br>3.083936<br>2.2071                                                                | -99.9<br>21.146655<br>8.3783636<br>4.1569909<br>3.0273545<br>0.9010455                                                       | -99.9<br>8.37158<br>3.492025<br>2.119683<br>1.99604<br>0.914108                                                                | 7.705936<br>3.287882<br>2.215382<br>1.712187<br>1.860149                                                                | 15.03<br>6.38<br>4.29<br>2.90<br>1.81                                                                | :  | max. conc. (mol %) based on tavg<br>max. conc. (mol %) based on tavg                                                                                                                                                                                                                               | Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors                                  |
| -99.9<br>-99.9<br>21.14<br>6.23<br>2.27<br>4.53<br>-99.9<br>-99.9                                                       | 6.12<br>-99.9<br>27.46918<br>12.93045<br>8.2248<br>5.685891<br>3.582927<br>-99.9                                              | 5.0102<br>2.774052<br>37.1426<br>15.167<br>8.8559<br>5.905018<br>3.220491<br>3.119291                                    | 6.3711<br>-99.9<br>-99.9<br>13.86173<br>8.615255<br>5.410327                                                 | -99.9<br>20.77245<br>7.978891<br>4.200045<br>3.083936<br>2.2071<br>-99.9                                                       | -99.9<br>21.146655<br>8.3783636<br>4.1569909<br>3.0273545<br>0.9010455<br>-99.9                                              | -99.9<br>8.37158<br>3.492025<br>2.119683<br>1.99604<br>0.914108<br>-99.9                                                       | 7.705936<br>3.287882<br>2.215382<br>1.712187<br>1.860149<br>-99.9                                                       | 15.03<br>6.38<br>4.29<br>2.90<br>1.81<br>-99.9                                                       | :  | max. conc. (mol %) based on tavg<br>max. conc. (mol %) based on tavg                                                                                                                                                                                           | Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors |
| -99.9<br>-99.9<br>21.14<br>6.23<br>2.27<br>4.53<br>-99.9<br>-99.9<br>-99.9                                              | 6.12<br>-99.9<br>27.46918<br>12.93045<br>8.2248<br>5.685891<br>3.582927<br>-99.9<br>-99.9                                     | 5.0102<br>2.774052<br>37.1426<br>15.167<br>8.8559<br>5.905018<br>3.220491<br>3.119291<br>1.58873                         | 6.3711<br>-99.9<br>-99.9<br>13.86173<br>8.615255<br>5.410327<br>4.241636                                     | -99.9<br>20.77245<br>7.978891<br>4.200045<br>3.083936<br>2.2071<br>-99.9<br>-99.9                                              | -99.9<br>21.146655<br>8.3783636<br>4.1569909<br>3.0273545<br>0.9010455<br>-99.9<br>-99.9                                     | -99.9<br>8.37158<br>3.492025<br>2.119683<br>1.99604<br>0.914108<br>-99.9<br>-99.9                                              | 7.705936<br>3.287882<br>2.215382<br>1.712187<br>1.860149<br>-99.9<br>-99.9                                              | 15.03<br>6.38<br>4.29<br>2.90<br>1.81<br>-99.9<br>-99.9                                              | :  | max. conc. (mol %) based on tavg<br>max. conc. (mol %) based on tavg                                                                                                                                                       | Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors                                  |
| -99.9<br>-99.9<br>21.14<br>6.23<br>2.27<br>4.53<br>-99.9<br>-99.9<br>-99.9<br>-99.9                                     | 6.12<br>-99.9<br>27.46918<br>12.93045<br>8.2248<br>5.685891<br>3.582927<br>-99.9<br>-99.9                                     | 5.0102<br>2.774052<br>37.1426<br>15.167<br>8.8559<br>5.905018<br>3.220491<br>3.119291<br>1.58873<br>-99.9                | 6.3711<br>-99.9<br>-99.9<br>13.86173<br>8.615255<br>5.410327<br>4.241636<br>-99.9                            | -99.9<br>20.77245<br>7.978891<br>4.200045<br>3.083936<br>2.2071<br>-99.9<br>-99.9<br>-99.9                                     | -99.9<br>21.146655<br>8.3783636<br>4.1569909<br>3.0273545<br>0.9010455<br>-99.9<br>-99.9<br>-99.9                            | -99.9<br>8.37158<br>3.492025<br>2.119683<br>1.99604<br>0.914108<br>-99.9<br>-99.9<br>-99.9                                     | 7.705936<br>3.287882<br>2.215382<br>1.712187<br>1.860149<br>-99.9<br>-99.9<br>-99.9                                     | 15.03<br>6.38<br>4.29<br>2.90<br>1.81<br>-99.9<br>-99.9<br>-99.9                                     | :  | max. conc. (mol %) based on tavg<br>max. conc. (mol %) based on tavg<br>sigma-y (m) based on time-summed concentration                                                                                                     | Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors |
| -99.9<br>-99.9<br>21.14<br>6.23<br>2.27<br>4.53<br>-99.9<br>-99.9<br>-99.9<br>-99.9<br>-99.9<br>-99.9                   | 6.12<br>-99.9<br>27.46918<br>12.93045<br>8.2248<br>5.685891<br>3.582927<br>-99.9<br>-99.9<br>-99.9<br>-99.9                   | 5.0102<br>2.774052<br>37.1426<br>15.167<br>8.8559<br>5.905018<br>3.220491<br>3.119291<br>1.58873<br>-99.9<br>-99.9       | 6.3711<br>-99.9<br>-99.9<br>13.86173<br>8.615255<br>5.410327<br>4.241636<br>-99.9<br>-99.9                   | -99.9<br>20.77245<br>7.978891<br>4.200045<br>3.083936<br>2.2071<br>-99.9<br>-99.9<br>-99.9<br>-99.9                            | -99.9<br>21.146655<br>8.3783636<br>4.1569909<br>3.0273545<br>0.9010455<br>-99.9<br>-99.9<br>-99.9<br>-99.9                   | -99.9<br>8.37158<br>3.492025<br>2.119683<br>1.99604<br>0.914108<br>-99.9<br>-99.9<br>-99.9<br>-99.9                            | 7.705936<br>3.287882<br>2.215382<br>1.712187<br>1.860149<br>-99.9<br>-99.9<br>-99.9<br>-99.9                            | 15.03<br>6.38<br>4.29<br>2.90<br>1.81<br>-99.9<br>-99.9<br>-99.9<br>-99.9                            | :  | max. conc. (mol %) based on tavg<br>max. conc. (mol %) based on tavg<br>sigma-y (m) based on time-summed concentration<br>sigma-y (m) based on time-summed concentration                                                   | Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors |
| 99.9<br>99.9<br>21.14<br>6.23<br>2.27<br>4.53<br>99.9<br>99.9<br>99.9<br>99.9<br>99.9<br>99.9<br>99.9                   | 6.12<br>-99.9<br>27.46918<br>12.93045<br>8.2248<br>5.685891<br>3.582927<br>-99.9<br>-99.9<br>-99.9<br>-99.9                   | 5.0102<br>2.774052<br>37.1426<br>15.167<br>8.8559<br>5.905018<br>3.220491<br>3.119291<br>1.58873<br>-99.9<br>-99.9       | 6.3711<br>-99.9<br>-99.9<br>13.86173<br>8.615255<br>5.410327<br>4.241636<br>-99.9<br>-99.9<br>-99.9          | -99.9<br>20.77245<br>7.978891<br>4.200045<br>3.083936<br>2.2071<br>-99.9<br>-99.9<br>-99.9<br>-99.9<br>-99.9                   | -99.9<br>21.146655<br>8.3783636<br>4.1569909<br>3.0273545<br>0.9010455<br>-99.9<br>-99.9<br>-99.9<br>-99.9<br>-99.9          | -99.9<br>8.37158<br>3.492025<br>2.119683<br>1.99604<br>0.914108<br>-99.9<br>-99.9<br>-99.9<br>-99.9<br>-99.9                   | 7.705936<br>3.287882<br>2.215382<br>1.712187<br>1.860149<br>-99.9<br>-99.9<br>-99.9<br>-99.9<br>-99.9                   | 15.03<br>6.38<br>4.29<br>2.90<br>1.81<br>-99.9<br>-99.9<br>-99.9<br>-99.9<br>-99.9                   |    | max. conc. (mol %) based on tavg<br>max. conc. (mol %) based on tavg<br>sigma-y (m) based on time-summed concentration<br>sigma-y (m) based on time-summed concentration                                                                                       | Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors |
| -99.9<br>-99.9<br>21.14<br>6.23<br>2.27<br>4.53<br>-99.9<br>-99.9<br>-99.9<br>-99.9<br>-99.9<br>-99.9                   | 6.12<br>-99.9<br>27.46918<br>12.93045<br>8.2248<br>5.685891<br>3.582927<br>-99.9<br>-99.9<br>-99.9<br>-99.9                   | 5.0102<br>2.774052<br>37.1426<br>15.167<br>8.8559<br>5.905018<br>3.220491<br>3.119291<br>1.58873<br>-99.9<br>-99.9       | 6.3711<br>-99.9<br>-99.9<br>13.86173<br>8.615255<br>5.410327<br>4.241636<br>-99.9<br>-99.9                   | -99.9<br>20.77245<br>7.978891<br>4.200045<br>3.083936<br>2.2071<br>-99.9<br>-99.9<br>-99.9<br>-99.9                            | -99.9<br>21.146655<br>8.3783636<br>4.1569909<br>3.0273545<br>0.9010455<br>-99.9<br>-99.9<br>-99.9<br>-99.9                   | -99.9<br>8.37158<br>3.492025<br>2.119683<br>1.99604<br>0.914108<br>-99.9<br>-99.9<br>-99.9<br>-99.9                            | 7.705936<br>3.287882<br>2.215382<br>1.712187<br>1.860149<br>-99.9<br>-99.9<br>-99.9<br>-99.9                            | 15.03<br>6.38<br>4.29<br>2.90<br>1.81<br>-99.9<br>-99.9<br>-99.9<br>-99.9                            |    | max. conc. (mol %) based on tavg<br>max. conc. (mol %) based on tavg<br>sigma-y (m) based on time-summed concentration<br>sigma-y (m) based on time-summed concentration                                                   | Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors |
| -99.9<br>-99.9<br>-99.9<br>21.14<br>6.23<br>2.27<br>4.53<br>-99.9<br>-99.9<br>-99.9<br>-99.9<br>-99.9<br>-99.9<br>-99.9 | 6.12<br>-99.9<br>-99.9<br>27.46918<br>12.93045<br>8.2248<br>5.685891<br>3.582927<br>-99.9<br>-99.9<br>-99.9<br>-99.9<br>-99.9 | 5.0102<br>2.774052<br>37.1426<br>15.167<br>8.8559<br>5.905018<br>3.220491<br>1.58873<br>-99.9<br>-99.9<br>-99.9<br>-99.9 | 6.3711<br>-99.9<br>-99.9<br>13.86173<br>8.615255<br>5.410327<br>4.241636<br>-99.9<br>-99.9<br>-99.9<br>-99.9 | -99.9<br>20.77245<br>7.978891<br>4.200045<br>3.083936<br>2.2071<br>-99.9<br>-99.9<br>-99.9<br>-99.9<br>-99.9<br>-99.9<br>-99.9 | -99.9<br>21.146655<br>8.3783636<br>4.1569909<br>3.0273545<br>0.9010455<br>-99.9<br>-99.9<br>-99.9<br>-99.9<br>-99.9<br>-99.9 | -99.9<br>8.37158<br>3.492025<br>2.119683<br>1.99604<br>0.914108<br>-99.9<br>-99.9<br>-99.9<br>-99.9<br>-99.9<br>-99.9<br>-99.9 | 7.705936<br>3.287882<br>2.215382<br>1.712187<br>1.860149<br>-99.9<br>-99.9<br>-99.9<br>-99.9<br>-99.9<br>-99.9<br>-99.9 | 15.03<br>6.38<br>4.29<br>2.90<br>1.81<br>-99.9<br>-99.9<br>-99.9<br>-99.9<br>-99.9<br>-99.9<br>-99.9 |    | max. conc. (mol %) based on tavg<br>max. conc. (mol %) based on tavg<br>sigma-y (m) based on time-summed concentration<br>sigma-y (m) based on time-summed concentration<br>sigma-y (m) based on time-summed concentration | Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors<br>Excluding non-trusted sensors |

Table 31. MDA data for BP DF1 CO2 experiments (input and measured data)



| Disk Burger Vandaké         Province Substructure         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |        | -          |             |        |        |         |         |                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|------------|-------------|--------|--------|---------|---------|---------------------------------------------------------------------------------------|
| Conv. Processor         Conv. Processor         Conv. Processor         Conv. Processor         Conv. Processor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |            | cac Cando   | Adam   |        |         |         | MEANING INPUT VARIABLE REFERENCE / ADDITIONAL NOTE                                    |
| Display         Display <t< td=""><td></td><td></td><td>nero relea</td><td>ses, spade/</td><td>nudifi</td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |        | nero relea | ses, spade/ | nudifi |        |         |         |                                                                                       |
| Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | AIUC   |            |             |        |        |         |         |                                                                                       |
| N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |        |            |             |        |        |         |         |                                                                                       |
| Deck         Deck <thdeck< th="">         Deck         Deck         <thd< td=""><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thd<></thdeck<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2      |        |            |             |        |        |         |         |                                                                                       |
| 11         13         13         13         13         13         14         13         14         13         14         13         14         13         14         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | СО25НЗ | 025H5  | CO25H11    | C025H1      | C025H2 | CO2SH4 | CO25H14 | CO25H16 |                                                                                       |
| Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |            |             |        |        |         |         |                                                                                       |
| Jown Matrix         Jown Matrix         Jown Matrix         Jown Matrix         Accord Field Accord Fi                                           |        |        |            |             |        |        |         |         |                                                                                       |
| Image: Marrier Marrie |        |        |            |             |        |        |         |         |                                                                                       |
| Hate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18     | 14     | 14         | 16          | 18     | 12     | 19      | 16      |                                                                                       |
| BADE         BADE <th< td=""><td>21</td><td>53</td><td>49</td><td>33</td><td>17</td><td>40</td><td>33</td><td>21</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21     | 53     | 49         | 33          | 17     | 40     | 33      | 21      |                                                                                       |
| BADE         BADE <th< td=""><td>44.01</td><td>44.01</td><td>44.01</td><td>44.01</td><td>44.01</td><td>44.01</td><td>44.01</td><td>44.01</td><td>: mol. weight (g/mole) Property as in MDA KitFox for CO2</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.01  | 44.01  | 44.01      | 44.01       | 44.01  | 44.01  | 44.01   | 44.01   | : mol. weight (g/mole) Property as in MDA KitFox for CO2                              |
| 4939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         6939         693         693         693         693         693         693         693         693         693         693         693         693         693         693         693         693         693         693         693         693         693         693         693         693         693         6939         6939         6939         6939         6939         6939         69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 186.25 | 186.25 | 186.25     | 186.25      | 186.25 | 186.25 | 186.25  | 186.25  | : normal boiling point (K) Property as in MDA KitFox for CO2                          |
| Hile         Hile <th< td=""><td>154749</td><td>154749</td><td>154749</td><td>154749</td><td>154749</td><td>154749</td><td>154749</td><td>154749</td><td>: latent heat of evaporation (J/kg) at 20C Property as in MDA KitFox for CO2</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 154749 | 154749 | 154749     | 154749      | 154749 | 154749 | 154749  | 154749  | : latent heat of evaporation (J/kg) at 20C Property as in MDA KitFox for CO2          |
| TY35         TY35         TY35         TY35         TY36         TY36 <th< td=""><td>839.3</td><td>839.3</td><td>839.3</td><td>839.3</td><td>839.3</td><td>839.3</td><td>839.3</td><td>839.3</td><td>: specific heat - vapor (J/kg-K) at 20C Property as in MDA KitFox for CO2</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 839.3  | 839.3  | 839.3      | 839.3       | 839.3  | 839.3  | 839.3   | 839.3   | : specific heat - vapor (J/kg-K) at 20C Property as in MDA KitFox for CO2             |
| International symbol         International symbol         International symbol         International symbol         International symbol         International symbol           International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol         International symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4118.8 | 4118.8 | 4118.8     | 4118.8      | 4118.8 | 4118.8 | 4118.8  | 4118.8  | : specific heat - liquid (J/kg-K) at 20C Property as in MDA KitFox for CO2            |
| Image: Project of the second       |        |        |            |             |        |        |         |         |                                                                                       |
| 14.480         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |        |            |             |        |        |         |         |                                                                                       |
| 11.13         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25         12.25 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |        |            |             |        |        |         | -       |                                                                                       |
| 0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |        |            |             |        |        |         |         |                                                                                       |
| Image         Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |        |            |             |        |        |         |         |                                                                                       |
| Her         Her         Her         Her         Her         Fourte type (HubAs DP)         Mean Part Part Part Part Part Part Part Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |        |            |             |        |        |         |         |                                                                                       |
| L         L         L         L         L         L         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |        |            |             |        |        |         |         |                                                                                       |
| 998         999         999         999         999         999         999         999         100         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124         124 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |        |            |             |        |        |         |         |                                                                                       |
| 14.4         14.7         18.8         15.5         17.8         7.72         10.3         5 pull variables         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2 <th1.2< th="">         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         <th1.2< th=""> <th1.2< th=""> <th1.2< th=""></th1.2<></th1.2<></th1.2<></th1.2<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |        | -          |             |        |        |         |         |                                                                                       |
| 100         401         100         90         156         200         159         200         159         200         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |        |            |             |        |        |         |         |                                                                                       |
| (mm)         (mm) <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |        |            |             |        |        |         |         |                                                                                       |
| 1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60         1.064-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |        |            |             |        |        |         |         |                                                                                       |
| 1110         0.905         0.978         1.006         0.977         1.006         0.977         1.006         0.977         1.006         0.977         1.006         0.977         1.006         0.977         1.006         0.977         1.006         0.977         1.006         0.977         1.006         0.977         1.006         0.977         1.006         0.977         1.006         0.977         1.006         0.977         1.006         0.977         1.006         0.977         1.006         0.977         1.006         0.977         1.006         0.977         1.006         0.977         1.006         0.977         1.006         0.977         1.006         0.977         1.006         0.977         1.006         0.977         1.006         0.977         1.006         0.977         1.006         0.977         1.006         0.977         1.006         0.977         1.006         0.977         1.006         0.977         1.006         0.977         0.977         0.977         0.977         0.977         0.977         0.977         0.977         0.977         0.977         0.977         0.977         0.977         0.977         0.977         0.977         0.977         0.977         0.977         0.977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |        |            |             |        |        |         |         |                                                                                       |
| Image: biolImage: bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |        |            |             |        |        |         |         |                                                                                       |
| 213.2         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5         217.5 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |        |            |             |        |        |         |         |                                                                                       |
| 0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |        |            |             |        |        |         |         |                                                                                       |
| 99999299299399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0      | 0      | 0          | 0           | 0      | 0      |         | 0       |                                                                                       |
| 1213         2015         274.5         285.6         284.6         284.5         274.5         285.6         214.0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th="">         1         1</th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -99.9  | -99.9  | -99.9      | -99.9       | -99.9  | -99.9  | -99.9   | -99.9   |                                                                                       |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -99.9  | -99.9  | -99.9      | -99.9       | -99.9  | -99.9  | -99.9   | -99.9   | : measurement height for temperature #2 (m)                                           |
| 4.66         1.3         2.7.6         3.93         5.40         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94         1.94 <th< td=""><td>282.35</td><td>280.15</td><td>274.75</td><td>285.85</td><td>281.45</td><td>284.95</td><td>271.15</td><td>268.25</td><td>: soil temperature (K) Following BP advice, assumed to be 2 degrees lower than ambien</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 282.35 | 280.15 | 274.75     | 285.85      | 281.45 | 284.95 | 271.15  | 268.25  | : soil temperature (K) Following BP advice, assumed to be 2 degrees lower than ambien |
| Image: Biol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1      | 1      | 1          | 1           | 1      | 1      | 1       | 1       | : soil moisture (1:dry,2:moist,3:water)                                               |
| 999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       999       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.05   | 1.3    | 2.76       | 3.93        | 5.43   | 1.98   | 1.34    | 1.48    | : wind speed (m/s) datasheets - mean value A1 prior to release                        |
| 999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999 <td>10</td> <td>10</td> <td>10</td> <td>10</td> <td>10</td> <td></td> <td>10</td> <td></td> <td>: measurement height for wind speed (m) GL report - Section 4.1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10     | 10     | 10         | 10          | 10     |        | 10      |         | : measurement height for wind speed (m) GL report - Section 4.1                       |
| 99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |        |            |             |        |        |         |         |                                                                                       |
| •999         ·999         ·999         ·999         ·999         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990         ·990 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |        |            |             |        |        |         |         |                                                                                       |
| P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |        |            |             |        |        |         |         |                                                                                       |
| 1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |        |            |             |        |        |         |         |                                                                                       |
| 999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |        |            |             |        |        |         |         |                                                                                       |
| 999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         999         1000         990         990         990         990         990         990         990         990         990         990         990         990         990         990         990         990         990         990         990         990         990         990         990         990         990         990         990         990         990         990         990         990         990         990         990         990         990         990         990         990         990         990         990         990         990 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |            |             |        |        |         |         |                                                                                       |
| 999         999         999         999         999         999         1999         1 inverse Manin-Obukhov length (1/m)         P27 To deck           1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |        |            |             |        |        |         |         |                                                                                       |
| ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?       ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |        |            |             |        |        |         |         |                                                                                       |
| 4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |        |            |             |        |        |         |         |                                                                                       |
| P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P<         P         P<         P         P<         P<         P<         P<         P<         P<         P         P<         P<         P<         P<         P<         P<         P<         P<         P         P         P         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |        |            |             |        |        |         |         |                                                                                       |
| ?         ?         ?         ?         ?         ?         ?         Iongrude (deg)         ??? To apply SpadeAdam location           1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |            |             |        |        |         |         |                                                                                       |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |        |            |             |        |        |         |         |                                                                                       |
| 99       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       100       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 1    | . 1    |            |             |        |        |         |         |                                                                                       |
| 99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       99.9       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |        |            |             |        |        |         |         |                                                                                       |
| 4       4       4       4       4       4       1: number of distance downwind         5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -99.9  | -99.9  | -99.9      | -99.9       | -99.9  | -99.9  | -99.9   | -99.9   |                                                                                       |
| 4       4       4       4       4       4       1: number of distance downwind         5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |        |            |             |        |        |         |         |                                                                                       |
| 5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4      | 4      | 4          | 4           | 4      | 4      | 4       | 4       |                                                                                       |
| 15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       16 <th< td=""><td>5</td><td>5</td><td>5</td><td>5</td><td>5</td><td>5</td><td>5</td><td>5</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5      | 5      | 5          | 5           | 5      | 5      | 5       | 5       |                                                                                       |
| 20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20 <td< td=""><td>10</td><td>10</td><td>10</td><td>10</td><td>10</td><td>10</td><td>10</td><td>10</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10     | 10     | 10         | 10          | 10     | 10     | 10      | 10      |                                                                                       |
| 40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |        |            |             |        |        |         |         |                                                                                       |
| 66       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       7       distance downwind (m)         33.74       39.00       16.00       23.87       43.11       12.48       18.26       20.73       :       max. conc. (mol %) based on tpeak       datasheets - max. of all O2 sensors at given distance downstream         8.79       18.83       7.87       5.45       12.39       2.48       4.81       :       max. conc. (mol %) based on tpeak       datasheets - max. of all O2 sensors at given distance downstream         6.41       12.25       5.04       4.77       10.59       2.77       3.28       4.91       :       max. conc. (mol %) based on tpeak       datasheets - max. of all O2 sensors at given distance downstream         3.88       5.83       3.02       1.82       2.67       1.88       2.84       :       max. conc. (mol %) based on tpeak       datasheets - max. of all O2 sensors at given distance downstream         9.99       9.99       9.99       9.99       9.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |        |            |             |        |        |         |         |                                                                                       |
| 80         80         80         80         80         80         80         80         1         distance downwind (m)           33.74         39.00         16.00         22.87         43.11         12.18         18.26         20.73         : max. conc. (mol %) based on tpeak         datasheets - max. of all O2 sensors a given distance downstream           13.98         20.11         8.31         9.68         19.75         4.86         6.44         8.47         : max. conc. (mol %) based on tpeak         datasheets - max. of all O2 sensors a given distance downstream           6.41         12.25         5.04         4.77         10.59         2.57         3.28         4.41         : max. conc. (mol %) based on tpeak         datasheets - max. of all O2 sensors a given distance downstream           3.83         3.02         2.82         5.75         1.39         1.88         2.86         : max. conc. (mol %) based on tpeak         datasheets - max. of all O2 sensors a given distance downstream           1.92         2.66         3.73         1.42         2.67         0.61         0.91         4.30         : max. conc. (mol %) based on tpeak         datasheets - max. of all O2 sensors a given distance downstream           9.99         9.99         9.99         9.99         9.99         9.99         9.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |        |            |             |        |        |         |         |                                                                                       |
| 33.74       39.00       16.00       23.87       43.11       12.18       18.26       20.73       1: max. conc. (mol %) based on tpeak       datasheets - All O2 sensors; original MDA uses ppm instead of mol         13.98       20.11       8.31       9.68       19.75       4.86       6.84       8.45       1: max. conc. (mol %) based on tpeak       datasheets - max. of all O2 sensors at given distance downstream         8.79       18.86       7.87       5.45       12.39       2.98       6.34       8.17       1: max. conc. (mol %) based on tpeak       datasheets - max. of all O2 sensors at given distance downstream         3.88       5.83       3.02       2.82       5.75       1.39       1.88       2.86       1: max. conc. (mol %) based on tpeak       datasheets - max. of all O2 sensors at given distance downstream         3.98       5.83       3.02       2.82       5.75       1.39       1.88       2.86       1: max. conc. (mol %) based on tpeak       datasheets - max. of all O2 sensors at given distance downstream         9.99       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |        |            |             |        |        |         |         |                                                                                       |
| 13.88       20.11       8.31       9.68       19.75       4.86       6.94       8.45       : max. conc. (mol %) based on tpeak       datasheets - max. of all O2 sensors at given distance downstream         8.79       18.36       7.87       5.45       12.39       2.98       6.34       8.17       : max. conc. (mol %) based on tpeak       datasheets - max. of all O2 sensors at given distance downstream         6.41       12.35       5.04       4.77       10.59       2.57       1.38       2.68       : max. conc. (mol %) based on tpeak       datasheets - max. of all O2 sensors at given distance downstream         3.38       5.83       3.02       2.82       5.75       1.39       1.88       2.68       : max. conc. (mol %) based on tpeak       datasheets - max. of all O2 sensors at given distance downstream         4.39       9.69       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |        |            |             |        |        |         |         |                                                                                       |
| 8.79       18.36       7.87       5.45       12.39       2.98       6.34       8.17       : max. conc. (mol %) based on tpeak       datasheets - max. of all O2 sensors at given distance downstream         6.41       12.35       5.04       4.77       10.59       2.57       3.28       4.91       : max. conc. (mol %) based on tpeak       datasheets - max. of all O2 sensors at given distance downstream         3.88       3.00       2.82       5.75       1.19       1.88       2.86       : max. conc. (mol %) based on tpeak       datasheets - max. of all O2 sensors at given distance downstream         3.83       3.06       1.86       1.54       4.74       1.04       1.61       : max. conc. (mol %) based on tpeak       datasheets - max. of all O2 sensors at given distance downstream         1.92       2.68       3.73       1.42       2.67       0.61       0.91       4.30       : max. conc. (mol %) based on tpeak       datasheets - max. of all O2 sensors at given distance downstream         9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |            |             |        |        |         |         |                                                                                       |
| 6.41       12.35       5.04       4.77       10.59       2.67       3.28       4.91       : max. conc. (mol %) based on tpeak       datasheets - max. of all O2 sensors at given distance downstream         3.98       5.83       3.02       2.22       5.75       1.39       1.88       2.66       : max. conc. (mol %) based on tpeak       datasheets - max. of all O2 sensors at given distance downstream         2.36       3.06       1.68       1.54       2.74       1.04       1.6       1: max. conc. (mol %) based on tpeak       datasheets - max. of all O2 sensors at given distance downstream         1.92       6.643       7.3       1.42       2.67       0.61       0.91       : max. conc. (mol %) based on tpeak       datasheets - max. of all O2 sensors at given distance downstream         9.99       -99.9       -99.9       -99.9       -99.9       -99.9       imax. conc. (mol %) based on tayg       datasheets - max. of all O2 sensors at given distance downstream         9.99       -99.9       -99.9       -99.9       -99.9       -99.9       imax. conc. (mol %) based on tayg       imax. conc. (mol %) based on tayg         9.99       -99.9       -99.9       -99.9       -99.9       -99.9       imax. conc. (mol %) based on tayg       imax. conc. (mol %) based on tayg         9.99       -99.9       -99.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |            |             |        |        |         |         |                                                                                       |
| 3.88       5.83       3.00       2.82       5.75       1.39       1.88       2.86       : max. conc. (mol %) based on tpeak       datasheets - max. of all O2 sensors at given distance downstream         2.34       3.06       1.68       1.64       2.74       1.04       1.16       1.61       : max. conc. (mol %) based on tpeak       datasheets - max. of all O2 sensors at given distance downstream         1.99       9.99       -99.9       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |            |             |        |        |         |         |                                                                                       |
| 2.34       3.06       1.68       1.54       2.74       1.04       1.16       1.61       1       max. conc. (mol %) based on tpeak       databeets - max. of all O2 sensors at given distance downstream         1.92       2.66       3.73       1.42       2.67       0.61       0.91       4.30       : max. conc. (mol %) based on tpeak       databeets - max. of all O2 sensors at given distance downstream         9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.99       9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |        |            |             |        |        |         |         |                                                                                       |
| 1.92       2.69       3.73       1.42       2.67       0.61       0.91       4.30       : max. conc. (mol %) based on typeak       datasheets - max. of all O2 sensors at given distance downstream         9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.         9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.         9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99.       9.99. </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |        |            |             |        |        |         |         |                                                                                       |
| -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999       -999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |        |            |             |        |        |         |         |                                                                                       |
| -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |        |            |             |        |        |         |         |                                                                                       |
| -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |        |            |             |        |        |         |         |                                                                                       |
| -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |        |            |             |        |        |         |         |                                                                                       |
| -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |        |            |             |        |        |         |         |                                                                                       |
| -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |        |            |             |        |        |         |         |                                                                                       |
| -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |        |            |             |        |        |         |         |                                                                                       |
| -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |        |            |             |        |        |         |         |                                                                                       |
| -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |        |            |             |        |        |         |         |                                                                                       |
| -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |        |            |             |        |        |         |         | •                                                                                     |
| -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |        |            |             |        |        |         |         |                                                                                       |
| -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9       -99.9 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |        |            |             |        |        |         |         |                                                                                       |
| -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 : sigma-γ (m) based on time-summed concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |        |            |             |        |        |         |         |                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |        |            |             |        |        |         |         |                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |        |            |             |        |        |         | -99.9   |                                                                                       |



Table 32. MDA data for Shell CO<sub>2</sub> experiments (input and measured data)



## *A.4* Finite-duration dispersion (Kit Fox experiments)

The input data for the Kit Fox experiments are given below as taken from the MDA database from Hanna and Chang  $(1999)^{23}$ .



| <u>Series</u>                       | Kit Fox - URA continuous |
|-------------------------------------|--------------------------|
| Substance                           | CO2                      |
| Release height (m)                  | 0                        |
| Release direction                   | Vertical                 |
| Ref. height for windspeed (m)       | 2                        |
| Ref. height for air temperature (m) | 2.1                      |
| Surface roughness length (m)        | 0.01                     |
| Dispersing surface                  | Land                     |
| Solar flux (W/m2)                   | 500                      |
| Averaging time (s)                  | 20                       |

| URA continuous experiment       | KF0604 | KF0805 | KF0702 | KF0808 | KF0605 | KF0703 | KF0705 | KF0606 | KF0811 | KF0709 | KF0609 | KF0712 |
|---------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Release duration (s)            | 120    | 150    | 140    | 120    | 120    | 180    | 180    | 180    | 240    | 180    | 300    | 255    |
| Release rate (kg/s)             | 1.758  | 1.513  | 1.913  | 1.622  | 1.881  | 1.651  | 1.733  | 2.072  | 1.498  | 1.722  | 1.47   | 1.544  |
| Release temperature (K)         | 305.22 | 305.23 | 307.57 | 303.25 | 303.77 | 306.46 | 305.81 | 302.45 | 300.53 | 303.62 | 302.29 | 302.2  |
| Release velocity (m/s)          | 0.496  | 0.420  | 0.531  | 0.451  | 0.523  | 0.459  | 0.481  | 0.579  | 0.416  | 0.478  | 0.408  | 0.432  |
| Stability class                 | D      | D      | E      | E      | E      | E      | E      | E      | E      | F      | F      | F      |
| Wind speed at ref. height (m/s) | 4.09   | 3.36   | 4.03   | 3.36   | 3.18   | 2.98   | 2.82   | 2.31   | 2.25   | 2.24   | 1.8    | 1.75   |
| Ambient temperature (K)         | 309.84 | 309.84 | 311.42 | 309.84 | 309.11 | 311.02 | 310.68 | 308.53 | 307.36 | 308.48 | 307.12 | 307.11 |
| Ambient pressure (Pa)           | 90442  | 90412  | 90433  | 90433  | 90443  | 90433  | 90433  | 90453  | 90473  | 90443  | 90463  | 90453  |
| Relative humidity (fraction)    | 0.14   | 0.15   | 0.1    | 0.15   | 0.14   | 0.1    | 0.1    | 0.14   | 0.16   | 0.12   | 0.14   | 0.12   |
| Dispersing surface temp. (K)    | 307.08 | 308.2  | 309.17 | 307.29 | 306.35 | 308.52 | 307.96 | 305.96 | 305.11 | 305.94 | 304.98 | 305.04 |
| Release density of CO2 (kg/m3)  | 1.580  | 1.605  | 1.605  | 1.605  | 1.605  | 1.605  | 1.605  | 1.595  | 1.605  | 1.605  | 1.605  | 1.593  |
|                                 |        |        |        |        |        |        |        |        |        |        |        |        |



| Kit Fox - ERP continuous |
|--------------------------|
| CO2                      |
| 0                        |
| Vertical                 |
| 2                        |
| 2.1                      |
| 0.12                     |
| Land                     |
| 500                      |
| 20                       |
|                          |

| ERP continuous experiment       | KF0503 | KF0504 | KF0206 | KF0305 | KF0508 | KF0404 |
|---------------------------------|--------|--------|--------|--------|--------|--------|
| Release duration (s)            | 120    | 120    | 360    | 300    | 180    | 450    |
| Release rate (kg/s)             | 3.915  | 3.701  | 3.887  | 3.986  | 3.769  | 3.89   |
| Release temperature (K)         | 298.71 | 297.26 | 306.37 | 298.71 | 296.76 | 295.76 |
| Release velocity (m/s)          | 1.08   | 1.02   | 1.08   | 1.10   | 1.05   | 1.08   |
| Stability class                 | D      | Е      | F      | F      | F      | F      |
| Wind speed at ref. height (m/s) | 2.63   | 2.21   | 1.84   | 1.45   | 1.22   | 0.82   |
| Ambient temperature (K)         | 306.6  | 306.28 | 306.03 | 305.64 | 304.55 | 303.17 |
| Ambient pressure (Pa)           | 90544  | 90554  | 90402  | 90453  | 90574  | 90483  |
| Relative humidity (fraction)    | 0.15   | 0.16   | 0.16   | 0.05   | 0.16   | 0.06   |
| Dispersing surface temp. (K)    | 303.27 | 303.01 | 303.97 | 303.06 | 301.77 | 301.24 |
| Release density of CO2 (kg/m3)  | 1.616  | 1.618  | 1.605  | 1.615  | 1.605  | 1.605  |
|                                 |        |        |        |        |        |        |

|                                     | <u>Kit Fox - URA puff</u> |
|-------------------------------------|---------------------------|
| Substance DNV                       | CO2                       |
| Release height (m)                  | 0                         |
| Release direction                   | Vertical                  |
| Release duration (s)                | 20                        |
| Ref. height for windspeed (m)       | 2                         |
| Ref. height for air temperature (m) | 2.1                       |
| Surface roughness length (m)        | 0.01                      |
| Dispersing surface                  | Land                      |
| Solar flux (W/m2)                   | 500                       |
| Averaging time (s)                  | 20                        |

| URA puff experiment             | KF0801 | KF0601 | KF0803 | KF0802 | KF0804 | KF0602 | KF0603 | KF0806 | KF0807 | KF0809 | KF0706 | KF0810 |
|---------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Release rate (kg/s)             | 1.109  | 1.282  | 1.618  | 1.619  | 1.651  | 1.654  | 1.712  | 1.589  | 1.756  | 1.572  | 1.498  | 1.576  |
| Release temperature (K)         | 309.76 | 308.39 | 308.42 | 309.13 | 307.84 | 307.74 | 307.02 | 305.18 | 304.67 | 303.3  | 305.47 | 303.34 |
| Release velocity (m/s)          | 0.308  | 0.365  | 0.449  | 0.450  | 0.459  | 0.459  | 0.476  | 0.441  | 0.488  | 0.437  | 0.423  | 0.438  |
| Stability class                 | D      | D      | D      | D      | D      | D      | D      | D      | E      | E      | E      | Е      |
| Wind speed at ref. height (m/s) | 4.62   | 4.42   | 4.31   | 4.29   | 4.20   | 4.03   | 3.85   | 3.36   | 3.24   | 3.09   | 2.66   | 2.47   |
| Ambient temperature (K)         | 311.67 | 310.19 | 311.47 | 311.59 | 311.09 | 310.05 | 309.97 | 310.26 | 310.05 | 309.43 | 309.92 | 308.68 |
| Ambient pressure (Pa)           | 90422  | 90442  | 90412  | 90422  | 90412  | 90443  | 90443  | 90422  | 90422  | 90443  | 90433  | 90453  |
| Relative humidity (fraction)    | 0.15   | 0.14   | 0.15   | 0.15   | 0.15   | 0.14   | 0.15   | 0.15   | 0.15   | 0.15   | 0.11   | 0.15   |
| Dispersing surface temp. (K)    | 309.75 | 307.65 | 309.27 | 309.49 | 308.62 | 307.46 | 307.27 | 307.68 | 307.55 | 306.92 | 307.08 | 306.25 |
| Release density of CO2 (kg/m3)  | 1.605  | 1.566  | 1.605  | 1.605  | 1.605  | 1.605  | 1.605  | 1.605  | 1.605  | 1.605  | 1.579  | 1.605  |

| URA puff experiment             | KF0812 | KF0704 | KF0708 | KF0710 | KF0607 | KF0711 | KF0608 | KF0713 | KF0714 |
|---------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Release rate (kg/s)             | 1.46   | 1.675  | 1.638  | 1.697  | 1.785  | 1.631  | 1.635  | 1.389  | 1.41   |
| Release temperature (K)         | 300.3  | 306.21 | 305.02 | 303.32 | 302.44 | 303.31 | 302.42 | 301.97 | 302.1  |
| Release velocity (m/s)          | 0.406  | 0.465  | 0.455  | 0.471  | 0.496  | 0.453  | 0.457  | 0.386  | 0.392  |
| Stability class                 | E      | F      | F      | F      | F      | F      | F      | F      | F      |
| Wind speed at ref. height (m/s) | 2.21   | 2.77   | 2.61   | 2.01   | 1.94   | 1.93   | 1.89   | 1.58   | 1.40   |
| Ambient temperature (K)         | 307.2  | 310.94 | 308.97 | 308.1  | 307.94 | 307.73 | 307.64 | 306.52 | 306.06 |
| Ambient pressure (Pa)           | 90473  | 90433  | 90443  | 90443  | 90453  | 90443  | 90463  | 90453  | 90463  |
| Relative humidity (fraction)    | 0.17   | 0.1    | 0.11   | 0.12   | 0.14   | 0.12   | 0.14   | 0.13   | 0.13   |



| Dispersing surface temp. (K)        | 304.75              | 308.3  | 306.23 | 305.69 | 305.64 | 305.38 | 305.45 | 304.65 | 304.18    |      |
|-------------------------------------|---------------------|--------|--------|--------|--------|--------|--------|--------|-----------|------|
| Release density of CO2 (kg/m3)      | 1.605               | 1.605  | 1.605  | 1.605  | 1.605  | 1.605  | 1.595  | 1.605  | 1.605     |      |
|                                     | •                   |        |        |        |        |        |        |        |           |      |
| <u>Series</u>                       | <u>Kit Fox - ER</u> | P puff |        |        |        |        |        |        |           |      |
| Substance                           | CO2                 |        |        |        |        |        |        |        |           |      |
| Release height (m)                  | 0                   |        |        |        |        |        |        |        |           |      |
| Release direction                   | Vertical            |        |        |        |        |        |        |        |           |      |
| Ref. height for windspeed (m)       | 2                   |        |        |        |        |        |        |        |           |      |
| Ref. height for air temperature (m) | 2.1                 |        |        |        |        |        |        |        |           |      |
| Surface roughness length (m)        | 0.12                |        |        |        |        |        |        |        |           |      |
| Dispersing surface                  | Land                |        |        |        |        |        |        |        |           |      |
| Solar flux (W/m2)                   | 500                 |        |        |        |        |        |        |        |           |      |
| Averaging time (s)                  | 20                  |        |        |        |        |        |        |        |           |      |
|                                     |                     |        |        |        |        |        |        |        |           |      |
| ERP puff experiment                 | KF0201              | KF0301 | KF0302 | KF0502 | KF0501 | KF0303 | KF0505 | KF0506 | KF0304 KF | 0507 |

| ERP puff experiment             | KF0201 | KF0301 | KF0302 | KF0502 | KF0501 | KF0303 | KF0505 | KF0506 | KF0304 | KF0507 | KF0403 | KF0306 | KF0307 |
|---------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Release duration                | 25     | 20     | 20     | 20     | 20     | 20     | 20     | 20     | 20     | 20     | 20     | 20     | 20     |
| Release rate (kg/s)             | 4.277  | 4.085  | 4.3    | 4.027  | 3.996  | 3.802  | 3.755  | 3.742  | 3.75   | 3.976  | 3.896  | 3.758  | 3.647  |
| Release temperature (K)         | 306.41 | 305.27 | 304.34 | 303.17 | 307.6  | 303.35 | 297.42 | 297.97 | 302.33 | 297.82 | 300.3  | 298.67 | 298.4  |
| Release velocity (m/s)          | 1.21   | 1.13   | 1.19   | 1.12   | 1.11   | 1.06   | 1.04   | 1.04   | 1.05   | 1.10   | 1.08   | 1.04   | 1.01   |
| Stability class                 | 7      | 7      | 7      | 7      | 7      | 7      | 8      | 8      | 8      | 9      | 9      | 9      | 9      |
| Wind speed at ref. height (m/s) | 2.88   | 3.07   | 2.74   | 2.7    | 2.64   | 2.19   | 2.24   | 1.67   | 1.66   | 1.43   | 1.24   | 1.22   | 1.14   |
| Ambient temperature (K)         | 308.81 | 308.21 | 307.87 | 306.8  | 307.15 | 307.16 | 306.15 | 305.38 | 306.36 | 304.9  | 303.93 | 304.56 | 304.17 |
| Ambient pressure (Pa)           | 90382  | 90443  | 90443  | 90534  | 90524  | 90443  | 90554  | 90574  | 90442  | 90574  | 90483  | 90463  | 90463  |
| Relative humidity (fraction)    | 0.14   | 0.04   | 0.05   | 0.15   | 0.15   | 0.05   | 0.16   | 0.16   | 0.05   | 0.16   | 0.06   | 0.05   | 0.05   |
| Dispersing surface temp. (K)    | 307.51 | 305.77 | 305.18 | 303.45 | 304.2  | 304.37 | 302.82 | 302.27 | 303.56 | 301.95 | 301.88 | 302.38 | 302.06 |
| Release density of CO2 (kg/m3)  | 1.576  | 1.605  | 1.605  | 1.605  | 1.605  | 1.605  | 1.605  | 1.605  | 1.592  | 1.606  | 1.605  | 1.611  |        |

.......

......



## A.5 PHMSA Validation Cases

#### LNG Experiments

The main assumptions for the LNG releases are outlined below:

- LNG is modelled as pure methane. This is in line with our recommendation for multi-component releases in Phast 6.7, since methane is the main component for all LNG releases. The LNG Model Validation Database also states this is generally an acceptable approach to model LNG vapour from evaporating pools.
- For these experiments, the methane was released from an elevated height with a very low momentum. This results in close to 100% rainout almost immediately.
- Coyote and Burro the spills were into a water basin, and we specify the "shallow open water" pool surface type. This has a minimum pool depth of 1 mm, and allows for ice formation underneath the pool. Given its offshore location, and in the absence of evidence to the contrary, we have run Maplin Sands using "deep open water" which does not allow ice formation. For Burro and Coyote the subsequent dispersion was over land, whereas the substrate is water for Maplin Sands.
- "Short" averaging time releases use t<sub>av</sub> = 18.75s (equivalent to instantaneous maximum concentration when accounting for wind meander). "Long" averaging time releases use the specified value of t<sub>av</sub> and use a time-centred rolling average calculation over that period to calculate concentrations. This corresponds to "Method 2" in the V12 database guide.
- For Coyote, custom processing within Phast and post-processing of exported results has been performed in order to remove the post-ignition data from the calculated time series..
- Phast normally uses a post-processing correction to unaveraged results (i.e. generated using t<sub>av</sub>=18.75 s) to account for different averaging times. This is done for performance reasons when users are interested in multiple averaging times. Here however for maximum accuracy we run all calculations at the desired averaging time. This applies to all experiments, not just LNG.
- We have assumed low release velocity (0.1 m/s) and the maximum permissible droplet size (1 cm) in all cases. Results are insensitive to changes in these inputs over realistic ranges.

The Phast default parameters should be sufficient for all other settings. A comprehensive set of input data for the LNG experiments is provided in Table 33.



| Description                                | Units   | MSN27              | MSN34              | MSN35              | BU03                  | BU07                  | BU08                  | BU09                  | CO03                  | CO05                  | CO06                  |
|--------------------------------------------|---------|--------------------|--------------------|--------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| RELEASE DATA                               |         |                    |                    |                    |                       |                       |                       |                       |                       |                       |                       |
| Release type                               |         | Continuous         | Continuous         | Continuous         | Continuous            | Continuous            | Continuous            | Continuous            | Continuous            | Continuous            | Continuous            |
| Released material name                     |         | Methane            | Methane            | Methane            | Methane               | Methane               | Methane               | Methane               | Methane               | Methane               | Methane               |
| Duration                                   | S       | 160                | 95                 | 135                | 167                   | 174                   | 107                   | 167                   | 65                    | 98                    | 82                    |
| Mass released                              | kg      | 3714               | 2044               | 3658               | 1E+05                 | 17289                 | 12453                 | 10730                 | 6532                  | 12676                 | 10139                 |
| Flowrate                                   | kg/s    | 23.21              | 21.51              | 27.09              | 87.98                 | 99.46                 | 116.9                 | 136                   | 100.7                 | 129                   | 123                   |
| Temperature of release component           | К       | 111.65             | 111.65             | 111.65             | 110.85                | 110.85                | 110.85                | 110.85                | 110.75                | 110.75                | 110.75                |
| Liquid mass fraction of release component  | kg/kg   | 1                  | 1                  | 1                  | 1                     | 1                     | 1                     | 1                     | 1                     | 1                     | 1                     |
| Droplet diameter (SMD)                     | m       | 0.01               | 0.01               | 0.01               | 0.01                  | 0.01                  | 0.01                  | 0.01                  | 0.01                  | 0.01                  | 0.01                  |
| Release velocity                           | m/s     | 0.1                | 0.1                | 0.1                | 0.1                   | 0.1                   | 0.1                   | 0.1                   | 0.1                   | 0.1                   | 0.1                   |
| Release height                             | m       | 0.5                | 0.7                | 0.5                | 1.5                   | 1.5                   | 1.5                   | 1.5                   | 1.5                   | 1.5                   | 1.5                   |
| Release angle [from horizontal]            | degrees | 0                  | 0                  | 0                  | 0                     | 0                     | 0                     | 0                     | 0                     | 0                     | 0                     |
| AMBIENT DATA                               |         |                    |                    |                    |                       |                       |                       |                       |                       |                       |                       |
| Pasquill stability class                   | -       | C/D                | D                  | D                  | С                     | D                     | E                     | D                     | С                     | С                     | D                     |
| Wind speed at reference height             | m/s     | 5.5                | 8.6                | 9.8                | 5.58                  | 8.75                  | 1.94                  | 5.94                  | 6.77                  | 10.47                 | 5.04                  |
| Reference height for windspeed             | m       | 10                 | 10                 | 10                 | 3                     | 3                     | 3                     | 3                     | 3                     | 3                     | 3                     |
| Temperature at reference height            | К       | 288.1              | 288.4              | 289.3              | 307.75                | 306.96                | 306.02                | 308.52                | 311.45                | 301.49                | 297.26                |
| Pressure at reference height               | N/m2    | 101325             | 101325             | 101325             | 94840                 | 94028                 | 94130                 | 94029                 | 93624                 | 93928                 | 94232                 |
| Reference height for temperature /pressure | m       | 1.9                | 1.9                | 1.9                | 1.0                   | 1.0                   | 1.0                   | 1.0                   | 1.0                   | 1.0                   | 1.0                   |
| Atmospheric humidity (fraction)            | -       | 0.53               | 0.9                | 0.77               | 0.052                 | 0.074                 | 0.045                 | 0.144                 | 0.113                 | 0.221                 | 0.228                 |
| SUBSTRATE DATA                             |         |                    |                    |                    |                       |                       |                       |                       |                       |                       |                       |
| Surface roughness length                   | m       | 0.0003             | 0.0003             | 0.0003             | 0.0002                | 0.0002                | 0.0002                | 0.0002                | 0.0002                | 0.0002                | 0.0002                |
| Dispersing surface type                    |         | Water              | Water              | Water              | Land                  |
| Temperature of dispersing surface          | К       | 288.8              | 289                | 289.8              | 307.75                | 306.96                | 306.02                | 308.52                | 311.45                | 301.49                | 297.26                |
| POOL DATA                                  |         |                    |                    |                    |                       |                       |                       |                       |                       |                       |                       |
| Pool surface type                          |         | Deep Open<br>Water | Deep Open<br>Water | Deep Open<br>Water | Shallow Open<br>Water |
| Temperature of pool surface                | К       | 288.8              | 289                | 289.3              | 307.75                | 306.96                | 306.02                | 308.52                | 311.45                | 301.49                | 297.26                |
| Bund diameter (<=0: no bund)               | m       | 0                  | 0                  | 0                  | 58                    | 58                    | 58                    | 58                    | 58                    | 58                    | 58                    |
| Bund height                                | m       | 0                  | 0                  | 0                  | 0                     | 0                     | 0                     | 0                     | 0                     | 0                     | 0                     |

Table 33: UDM Input Data for all PHMSA LNG experiments



#### **Thorney Island Continuous Experiments**

The geometry of the release was complicated: a vertical pipe releasing gas into a 2m diameter plate 0.5m above the surface to ensure low vertical momentum. The arrangement is shown in Figure 26, with the images taken from McQuaid & Roebuck (McQuaid & Roebuck, 1985)<sup>29</sup>.





Fig. 22.2 Outlet from the gas supply duct at the release point

#### Figure 26: Thorney Island Source for continuous release experiments.

It is not obvious how such a cylindrical source should be modelled in Phast. This is in-effect is a low momentum 'cylindrical wall' gas source, released in all directions before being dispersed downwind. Phast requires the provision of a flow rate and a velocity, from which a (planar) release area will be calculated. We have chosen a very low momentum horizontal jet, with horizontal velocity u equal to the calculated source exit velocity assuming a pipe of diameter  $D_{source} = 2 m$  and plate height h = 0.5 m

$$u=\frac{Q}{A\rho_v}=\frac{Q}{\pi\rho_v}$$

Here Q is the release rate (kg/s), A is the source area (=  $\pi D_{source}h$ ) and  $\rho v$  the vapour density of the Freon-12 / N2 mixture. This gives an equivalent release source with the correct velocity and flow rate, although the full mass flux is initially directed in a single direction. The height associated with the release is selected to be 0.25 m, half the height of the diverting plate.

While the overall flow rate and exit velocity are accurately represented in Phast, the directionality at the source is not: net horizontal momentum for the actual release is zero, and this could affect near-field concentrations

For TI45, the actual stability class is E-F, whereas in Phast one must choose either E or F. We have chosen F, this does not affect results significantly down to the 1% or so concentration level.

All measurements are based on an averaging time of 30s. The input data used for the Thorney Island experiments are presented in Table 34.



| Description                                   | Units   | TI45                 | TI47                 |
|-----------------------------------------------|---------|----------------------|----------------------|
| RELEASE DATA                                  |         |                      |                      |
| Release type                                  |         | Continuous           | Continuous           |
| Released material name                        |         | Freon (32%) N2 (68%) | Freon (32%) N2 (68%) |
| Duration                                      | s       | 455                  | 465                  |
| Mass released                                 | kg      | 4855                 | 4752                 |
| Flowrate                                      | kg/s    | 10.67                | 10.22                |
| Temperature of release component              | К       | 286.25               | 287.45               |
| Liquid mass fraction of release component     | kg/kg   | 0                    | 0                    |
| Release velocity                              | m/s     | 1.383                | 1.325                |
| Release height                                | m       | 0.25                 | 0.25                 |
| Release angle [from horizontal]               | degrees | 0                    | 0                    |
| AMBIENT DATA                                  |         |                      |                      |
| Pasquill stability class                      | -       | F                    | F                    |
| Wind speed at reference height                | m/s     | 2.3                  | 1.5                  |
| Reference height for windspeed                | m       | 10                   | 10                   |
| Temperature at reference height               | К       | 286.25               | 287.45               |
| Pressure at reference height                  | N/m2    | 101325               | 101325               |
| Reference height for temperature and pressure | m       | 2.0                  | 2.0                  |
| Atmospheric humidity (fraction)               | -       | 1.0                  | 0.974                |
| SUBSTRATE DATA                                |         |                      |                      |
| Surface roughness length                      | m       | 0.01                 | 0.01                 |
| Dispersing surface type                       |         | Land                 | Land                 |
| Temperature of dispersing surface             | К       | 285.95               | 287.65               |

Table 34: UDM input data for Thorney Island (continuous) experiments



#### Wind Tunnel Experiments

These wind-tunnel experiments involved isothermal releases. They corresponded to  $CO_2$  (CHRC-A) and  $SF_6$  (BA-Hamburg, BA-TNO) vapour area sources at ground level. Only the unobstructed experiments have been modelled.

All the experiments have been modelled at field scale rather than at the experimental scale. The UDM default atmospheric wind-speed profile (a function of vertical height, stability class and surface roughness) is appropriate for outdoor conditions but may not be appropriate for the wind tunnel. The wind profile exponent is calculated for a fixed geometric mean height for the boundary layer of 32.6m. Instead one should ideally use a best power-law fit to the experimentally observed wind-speed profile, but currently Phast does not support the direct input of a wind exponent. Therefore we have used the scaled data in our simulations. The UDM passive dispersion coefficients  $\sigma_y$ ,  $\sigma_z$  (as function of downwind distance, stability class, averaging time, etc.) are based on typical outdoor ambient turbulence and may again not be valid for wind tunnel conditions (although this may be less of an issue for neutral conditions).

Thus overall one needs to be very careful applying the standard UDM model to wind tunnel conditions, particularly with reference to establishing the ambient conditions (wind speed, turbulence) inside the wind-tunnel. Since modification of these ambient conditions is not currently possible by the Phast user, we have therefore selected to model the full-scale comparison only.

In each case, the release source is at ground level over a relatively wide field-scale area with low gas velocity. Such releases can be specified in Phast as a 'pool source (radius)' on the 'user-defined source' window representing the release. The user needs to specify the flow rate, temperature and radius corresponding to the given source area, with the release velocity calculated from these values.

The input data used for the wind tunnel experiments are presented in Table 35. The largest changes in the input data from the previous V11 database are related to the BA-Hamburg experiments, and largely related to uncertainties regarding the obstructed experiments. The changes that impact the unobstructed cases are:

- Clarification of the release flow rate and the source/ambient temperatures associated with the experiments.
- A recommendation for modellers to select the appropriate surface roughness which gives closest agreement with the vertical velocity and turbulence intensity profiles published by Marotzke and presented in the V12 database guide (Stewart, Coldrick, Gant, & Ivings, 2016).

The Marotzke velocity profile has been fitted to the UDM power law formulation to give a best fit roughness of 0.0039 m, which has been used for both BA-Hamburg experiments. This is within the stated range of  $0.0055m \pm 0.0045m$  for the equivalent field scale surface roughness.



| Description                                   | Units   | CHRC A            | Hamburg DA0120    | Hamburg DAT223    | TNO TUV01         | TNO FLS           |
|-----------------------------------------------|---------|-------------------|-------------------|-------------------|-------------------|-------------------|
| RELEASE DATA                                  |         |                   |                   |                   |                   |                   |
| Release type                                  |         | Continuous        | Continuous        | Continuous        | Continuous        | Continuous        |
| Released material name                        |         | CO2               | SF6               | SF6               | SF6               | SF6               |
| Duration                                      | s       | 1470              | 2881              | 1024              | 883               | 883               |
| Mass released                                 | kg      | -                 | -                 | -                 | -                 | -                 |
| Flowrate                                      | kg/s    | 291.1             | 60                | 300               | 13.43             | 56.2              |
| Temperature of release component              | к       | 296               | 283.5             | 283.5             | 293               | 293               |
| Liquid mass fraction of release component     | kg/kg   | 0                 | 0                 | 0                 | 0                 | 0                 |
| Release velocity                              | m/s     | 0.02              | 0.094             | 0.471             | 0.0399            | 0.167             |
| Release height                                | m       | 0.0 (Pool Source) |
| Release angle [from horizontal]               | degrees | -                 | -                 | -                 | -                 | -                 |
| AMBIENT DATA                                  |         |                   |                   |                   |                   |                   |
| Pasquill stability class                      | -       | D                 | D                 | D                 | D                 | D                 |
| Wind speed at reference height                | m/s     | 4.9               | 6.92              | 9.47              | 5.12              | 6.88              |
| Reference height for windspeed                | m       | 10                | 1.178             | 2.24              | 0.65              | 1.17              |
| Temperature at reference height               | к       | 296               | 287.2             | 287.2             | 293               | 293               |
| Pressure at reference height                  | N/m2    | 97880             | 101325            | 101325            | 101325            | 101325            |
| Reference height for temperature and pressure | m       | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               |
| Atmospheric humidity (fraction)               | -       | 0.7               | 0.7               | 0.7               | 0.7               | 0.7               |
| SUBSTRATE DATA                                |         |                   |                   |                   |                   |                   |
| Surface roughness length                      | m       | 0.108             | 0.0039            | 0.0039            | 0.0039            | 0.0039            |
| Dispersing surface type                       |         | Land              | Land              | Land              | Land              | Land              |
| Temperature of dispersing surface             | к       | 296               | 287.2             | 287.2             | 293               | 293               |

Table 35: UDM input data for wind tunnel experiments



# Appendix B. Definition of cloud width

The cloud width for a continuous release is calculated according to the availability and definition of the experimental cloud width:

#### 1. No experimental cloud width data

In the cases where no experimental data is available the UDM effective cloud half width is plotted. This is defined as follows (see UDM theory manual for further details)

$$W_{eff} = \frac{1}{c(x,0,z)} \int_{0}^{\infty} c(x,y,z) dy = \int_{0}^{\infty} F_{h}(y) dy = \Gamma(1+\frac{1}{m}) R_{y}(x)$$
(11)

#### 2. SMEDIS data

The cloud width b (m) for SMEDIS<sup>11</sup>output is defined by

$$b^{2} = \frac{\int_{0}^{\infty} y^{2} c(x, y, z) dy}{\int_{0}^{\infty} c(x, y, z) dy} = \frac{\int_{0}^{\infty} y^{2} F_{h}(y) dy}{\int_{0}^{\infty} F_{h}(y) dy} = \frac{\Gamma(\frac{3}{m})}{\Gamma(\frac{1}{m})} R_{y}(x)^{2}$$
(12)

and therefore

$$b = \sqrt{\frac{\Gamma(\frac{3}{m})}{\Gamma(\frac{1}{m})}} R_{y}(x)$$
(13)

#### 3. Hanna's Data

Hanna's<sup>10</sup> cloud width is defined as the lateral distance at which the cloud concentration has fallen to a factor e<sup>-0.5</sup> times the centreline concentration:

$$\frac{c(x,b,z)}{c(x,0,z)} = e^{-0.5}$$
(14)

From this definition the following relationship may be defined:

$$c(x,b,z) = c_o(x) F_h(b) = c_o(x) \exp\left[-\left(\frac{b}{R_y(x)}\right)^m\right]$$
(15)

hence from the given definition

$$\exp\left[-\left(\frac{b}{a_2(x)}\right)^m\right] = \exp(-0.5) \quad ; \quad b = \frac{R_y(x)}{2^{1/m}} = 2^{\frac{1}{2} - \frac{1}{m}} \sigma_y$$
(16)



#### 4. PHMSA data

For the Burro and Coyote experiments, the UDM cloud width has been calculated in line with the LNG guideline by Coldrick et al<sup>3</sup>. Thus the width is calculated using the Pasquill definition of cloud width,  $b_{PASQUILL}$ . See the UDM theory manual for the UDM concentration profile, which expresses the concentration c(x,y,z) as a function of downwind distance x, crosswind distance y and vertical height z. By insertion of this profile into the formula for the cloud width, the UDM cloud width has been evaluated (m = vertical cross-wind concentration profile exponent,  $R_y$  = UDM cloud crosswind radius,  $\Gamma$  = Gamma function):

$$b_{PASQUILL} = \sqrt{\frac{\int_{0}^{\infty} y^{2} c(x, y, z) dy}{\int_{0}^{\infty} c(x, y, z) dy}} - \left\{ \frac{\int_{0}^{\infty} y c(x, y, z) dy}{\int_{0}^{\infty} c(x, y, z) dy} \right\}^{2} = R_{y}(x) \sqrt{\left\{ \frac{\Gamma(\frac{3}{m})}{\Gamma(\frac{1}{m})} - \frac{\Gamma(\frac{2}{m})}{\Gamma(\frac{1}{m})} \right\}}$$
(17)

Comparison of cloud widths

Figure 27 plots each of the four above definitions for cloud width (as a proportion to RADY), as a function of the exponent m in the crosswind conentration profile. According to the UDM theory manual, m is a function of the density ratio  $r = (\rho_{cld} - \rho_a)/\rho_a$  with m=2 for r=0 and m $\rightarrow$  50 for values 5 larger than 5. Thus for a heavy gas release, m will typically vary from m=50 (top-hat profile) in the near-field to m=2 (Gaussian profile) in the far-field.

- As m → 50 (typically in the near-field ), the Hanna width becomes close to the effective cloud width, while the SMEDIS and PHMSA definitions become smaller.
- As  $m \rightarrow 2$  (downwind distance  $x \rightarrow \infty$ ) the definitions by Hanna, SMEDIS and PHMSA become identical. Thus for experimental datapoints sufficiently downwind, all the latter three definitions lead to identical result.

#### Time-varying release

All the above formulas are applicable to continuous releases. For the datasets currently in the experimental database effects of time-varying dispersion are only applicable to the Kit Fox experiments (finite-duration releases; MDA Hanna's definition of cloud width b; along-wind diffusion effects relevant) for to the experiments involving pools (Burro, Coyote, Maplin Sands; PHMSA definition of cloud width b; along-wind diffusion effects not relevant).

Hanna's equation (14) can also be applied for time-varying releases, where for validation purposes (to evaluate MG, VG) the maximum value of the cloud width b over all times is adopted.

The SMEDIS and PHMSA integral definitions of cloud width given by Equations (12) and (17) could be applied in general for time-varying releases, but this would require an evaluation of the integrals and again a maximum value of y over all times could be adopted. However if one would ignore effects of along-wind diffusion and observer mass correction, one can again use the analytical expressions (13) and (17) in terms or  $R_y$  and m to evaluate the cloud width b, where again for validation purposes (to evaluate MG, VG) the maximum value of the cloud width b over all times is adopted.





Figure 27. Comparison of cloud widths



# Appendix C. Chronological comparison of the performance of the UDM

The tables below present a statistical comparison of the UDM predictions with the measured experimental data for different releases of the UDM, from Version 5.2 to the present release.

Phast 6.0 considerably improved predictions over earlier versions. Since 6.0, the performance of the UDM has been relatively stable. Changes for Phast 6.7 results reflect the first PHMSA validation process (using the v11 database) and show differences for LNG and related experiments. The most significant changes occurred for v8.0 with the introduction of "observer" based dispersion modelling and AWD. Most recently, the Goldfish simulations for v8.4 have been updated to use purely McFarlane experimental data.

Another trend apparent from the table is the gradual extension of the experimental database to include additional datasets. The Coyote and Maplin Sands LPG experiments were added for v6.7; Thorney Island continuous were added for v6.7; BP and Shell  $CO_2$  were added for v8.0. This trend is likely to continue. From v8.4, all cases are available from DNV as Phast study files.

From Phast 8.4, the cases comprising the PHMSA validation set have been introduced in their entirety. The PHMSA v12 validation database has introduced a more detailed data set than previously including expanded point-wise concentrations (including Maplin Sands and Thorney Island which were previously arc-wise only), refined sensor co-ordinates and removal of post-ignition data for the Coyote experiments. Furthermore the arc-wise calculation for PHMSA is based on a sub-set of the observed and predicted concentrations at the sensor locations on an arc (as opposed to arc-wise predictions being the centre-line concentration at the arc). Making direct comparison between the current and previous mean and variance values for the PHMSA cases is difficult given these changes to the data set and the calculation method. As such from Phast 8.4 the PHMSA set as calculated by the PHMSA methodology will be presented. Previous values which were calculated using a sub-set of the current PHMSA data (e.g Maplin Sands, Burro, Coyote) will not be carried forward for comparison.

|                               |                       | Conce | ntration | Half W | idth     |
|-------------------------------|-----------------------|-------|----------|--------|----------|
| Series                        | Phast /Safeti version | Mean  | Variance | Mean   | Variance |
| Prairie Grass <sup>19</sup>   | 6.0                   | 0.91  | 1.67     | 0.80   | 1.19     |
|                               | 6.42                  | 0.91  | 1.67     | 0.88   | 1.19     |
|                               | 6.7                   | 0.93  | 1.79     | 0.88   | 1.19     |
|                               | 8.0                   | 0.94  | 1.67     | 0.89   | 1.19     |
|                               | 8.4                   | 0.98  | 1.69     | 0.88   | 1.22     |
|                               | 8.6                   | 0.95  | 1.69     | 0.90   | 1.21     |
|                               | 8.9                   | 0.95  | 1.69     | 0.90   | 1.21     |
| Desert Tortoise <sup>20</sup> | 6.0                   | 1.00  | 1.21     | 1.00   | 1.06     |
|                               | 6.42                  | 1.01  | 1.20     | 1.06   | 1.07     |
|                               | 6.7                   | 0.98  | 1.20     | 1.06   | 1.07     |
|                               | 8.0                   | 1.01  | 1.21     | 1.03   | 1.06     |
|                               | 8.4                   | 1.01  | 1.21     | 1.04   | 1.05     |

<sup>&</sup>lt;sup>19</sup> Hanna values only. PG8 and 17 width from SMEDIS omitted

<sup>&</sup>lt;sup>20</sup> SMEDIS values only (DT1 and 2), Hanna omitted

Validation | Unified Dispersion Model version 8.6 |



|                  | 8.6  | 1.00 | 1.18 | 1.06 | 1.03 |
|------------------|------|------|------|------|------|
|                  | 8.9  | 1.00 | 1.18 | 1.07 | 1.02 |
| Goldfish         | 6.0  | 1.81 | 1.61 | 0.48 | 1.78 |
|                  | 6.42 | 1.81 | 1.62 | 0.48 | 1.78 |
|                  | 6.7  | 1.84 | 1.65 | 0.48 | 1.78 |
|                  | 8.0  | 1.86 | 1.66 | 0.49 | 1.71 |
|                  | 8.4  | 1.69 | 1.51 | 0.48 | 1.77 |
|                  | 8.6  | 0.87 | 1.22 | 0.77 | 1.13 |
|                  | 8.9  | 0.87 | 1.22 | 0.77 | 1.13 |
| BP CO2           | 8.0  | 1.34 | 1.19 | -    | -    |
|                  | 8.4  | 1.33 | 1.19 | -    | -    |
|                  | 8.6  | 1.34 | 1.19 | -    | -    |
|                  | 8.9  | 1.34 | 1.19 | -    | -    |
| Shell CO2        | 8.0  | 1.16 | 1.09 | -    | -    |
|                  | 8.4  | 1.16 | 1.09 | -    | -    |
|                  | 8.6  | 1.14 | 1.08 | -    | -    |
|                  | 8.9  | 1.16 | 1.09 | -    | -    |
| COSHER           | 8.9  | 0.98 | 1.11 | -    | -    |
| Maplin Sands LPG | 6.7  | 2.03 | 2.19 | -    | -    |
|                  | 8.0  | 2.15 | 2.28 | -    | -    |
|                  | 8.4  | 1.86 | 1.84 | -    | -    |
|                  | 8.6  | 1.86 | 1.83 | -    | -    |
|                  | 8.9  | 1.87 | 1.85 | -    | -    |
| EEC              | 6.1  | 1.36 | 1.15 | 1.60 | 1.29 |
|                  | 6.42 | 1.36 | 1.15 | 1.60 | 1.29 |
|                  | 6.7  | 1.36 | 1.15 | 1.59 | 1.29 |
|                  | 8.0  | 1.36 | 1.16 | 1.59 | 1.29 |
|                  | 8.4  | 1.36 | 1.15 | 1.60 | 1.29 |
|                  | 8.6  | 1.37 | 1.16 | 1.60 | 1.29 |



|                 | 8.9   | 1.37 | 1.16  | 1.60 | 1.29 |
|-----------------|-------|------|-------|------|------|
| FLADIS          | 6.1   | 0.53 | 3.65  | 1.48 | 1.23 |
|                 | 6.42  | 0.53 | 3.68  | 1.48 | 1.23 |
|                 | 6.7   | 0.55 | 3.60  | 1.47 | 1.21 |
|                 | 8.0   | 0.56 | 3.57  | 1.46 | 1.21 |
|                 | 8.4   | 0.83 | 11.48 | 1.48 | 1.22 |
|                 | 8.621 | 0.78 | 1.69  | 1.39 | 1.17 |
|                 | 8.9   | 0.78 | 1.69  | 1.39 | 1.17 |
| Thorney Island  | 6.42  | 1.31 | 1.61  | -    | -    |
| (instantaneous) | 6.7   | 1.31 | 1.57  | -    | -    |
|                 | 8.0   | 0.88 | 1.34  | -    | -    |
|                 | 8.4   | 0.87 | 1.35  | -    | -    |
|                 | 8.6   | 0.87 | 1.35  | -    | -    |
|                 | 8.9   | 0.87 | 1.35  | -    | -    |
| KitFox URA      | 8.0   | 0.94 | 1.09  | 0.99 | 1.05 |
| (Continuous)    | 8.4   | 0.93 | 1.10  | 1.03 | 1.05 |
|                 | 8.6   | 0.93 | 1.10  | 1.03 | 0.93 |
|                 | 8.9   | 0.93 | 1.10  | 1.03 | 1.05 |
| KitFox URA      | 8.0   | 0.49 | 2.07  | 0.72 | 1.19 |
| (Puff)          | 8.4   | 0.54 | 2.08  | 0.77 | 1.15 |
|                 | 8.6   | 0.54 | 2.08  | 0.77 | 1.15 |
|                 | 8.9   | 0.54 | 2.08  | 0.77 | 1.15 |
| Jack Rabbit 2   | 8.6   | 0.98 | 1.87  | 0.32 | 3.89 |
|                 | 8.9   | 0.98 | 1.87  | 0.32 | 3.89 |

### Table 36. Chronological performance for MG/VG values

|        |         | Pointwise |    |
|--------|---------|-----------|----|
| Series | Version | MG        | VG |

<sup>&</sup>lt;sup>21</sup> Changes reflect corrections to the validation data used for this experiment set Validation | Unified Dispersion Model version 8.6 |



| 8.4 | 12.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | >1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8.6 | 8.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | >1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8.9 | 8.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | >1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8.4 | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8.6 | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8.9 | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8.4 | 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8.6 | 1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8.9 | 1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8.4 | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8.6 | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8.9 | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8.4 | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8.6 | 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8.9 | 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8.4 | 1.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8.6 | 1.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8.9 | 1.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8.4 | 1.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8.6 | 1.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8.9 | 1.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | 8.6         8.9         8.4         8.6         8.9         8.4         8.6         8.9         8.4         8.6         8.9         8.4         8.6         8.9         8.4         8.6         8.9         8.4         8.6         8.9         8.4         8.6         8.9         8.4         8.6         8.9         8.4         8.6         8.9         8.4         8.6         8.9         8.4         8.6         8.9         8.4         8.6         8.9         8.4         8.6 | 8.6       8.38         8.9       8.37         8.4       0.88         8.6       0.89         8.9       0.89         8.9       0.89         8.4       1.19         8.6       1.18         8.9       1.18         8.9       0.47         8.6       0.43         8.9       0.43         8.9       0.43         8.4       0.47         8.6       0.78         8.4       0.78         8.4       1.98         8.5       1.32         8.6       1.32         8.7       1.93         8.6       1.98 |

Table 37: Chronological list (starting at v8.4) for the PHMSA validation set



# NOMENCLATURE

| A<br>b<br>c ()<br>c <sub>o</sub> ()<br>H<br>Z <sub>cld</sub><br>W <sub>eff</sub><br>x<br>y |   | Area (m <sup>2</sup> )<br>SMEDIS cloud width (m)<br>Concentration (mol%)<br>Centre-line concentration (mol%)<br>User specified height (m)<br>Centreline height (m)<br>Effective cloud half width (UDM) (m)<br>Downwind distance (m)<br>Crosswind distance (m) |
|--------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| y<br>z                                                                                     | - | Crosswind distance (m)<br>Vertical height (m)                                                                                                                                                                                                                 |
|                                                                                            |   |                                                                                                                                                                                                                                                               |



### **About DNV**

We are the independent expert in risk management and quality assurance. Driven by our purpose, to safeguard life, property and the environment, we empower our customers and their stakeholders with facts and reliable insights so that critical decisions can be made with confidence. As a trusted voice for many of the world's most successful organizations, we use our knowledge to advance safety and performance, set industry benchmarks, and inspire and invent solutions to tackle global transformations.

### **Digital Solutions**

DNV is a world-leading provider of digital solutions and software applications with focus on the energy, maritime and healthcare markets. Our solutions are used worldwide to manage risk and performance for wind turbines, electric grids, pipelines, processing plants, offshore structures, ships, and more. Supported by our domain knowledge and Veracity assurance platform, we enable companies to digitize and manage business critical activities in a sustainable, cost-efficient, safe and secure way.



## REFERENCES

<sup>1</sup> Daish, N.C., Britter, R.E., Linden, P.F., Jagger. S.F., and Carissimo, B., "SMEDIS: Scientific Model Evaluation techniques applied to dense gas dispersion models in complex situations", International Conference and Workshop on Modelling the Consequences of Accidental Releases of Hazardous Materials, CCPS, San Francisco, California, September 28 – October 1 (1999)

<sup>2</sup> Witlox, H.W.M., and Harper, M., "Validation of Phast dispersion model UDM against experiments in LNG Model Validation Database", DNV, April 2011

<sup>3</sup> Coldrick, S., Lea, C.J. and Ivings, M.J., "Validation database for evaluating vapour dispersion models for Safety Analysis of LNG facilities", Guide to the LNG model validation database, Health and Safety Laboratory, Revision May 2010 (2010) <sup>4</sup> Ivings, M.J., Jagger, S.F., Lea, C.J., and Webber, D.M., "Evaluating vapour dispersion models for safety analysis of LNG facilities research project", Health and Safety Laboratory, April 2007 (2007)

<sup>5</sup> Britter, R.E., "Recent Research on the dispersion of hazardous materials" European Commission Report EUR 18198 EN

<sup>6</sup> Lowesmith, B. (2013). COSHER: Large Scale Experiments to Study the Rupture of a High Pressure CO2 Pipeline: Detailed Results of Test 1. In Hewett Conclusive Report NS051-SS-REP-000-00024 (2021). UK Government Department of Business, Energy and Industrial Strategy.

<sup>7</sup> M. Ahmad et al., "COSHER joint industry project: Large scale pipeline rupture tests to study CO2 release and dispersion," International Journal of Greenhouse Gas Control 37, 340 (2015).

<sup>8</sup> Witlox, H.W.M. Harper, M., Oke,A. and Stene, J., "Validation of discharge and atmospheric dispersion for unpressurised and pressurised carbon dioxide releases", Special CCS Safety issue of Journal of Process Safety and Environmental Protection <u>92</u>, pp. 3-16 (2014)

http://www.sciencedirect.com/science/article/pii/S0957582013000505

<sup>9</sup> Witlox, H.W.M., Holt, A., and Harper, M., "Validation of the Unified Dispersion Model Against Kit Fox Field Data", Contract 44003900 for Exxon Mobil, DNV, London (2005)

<sup>10</sup> Hanna, S.R., D.G.Strimaitis, and J.C.Chang, "Hazard response modelling uncertainty (A quantitative method)", Sigma Research Corp. report, Westford, MA for the API (1991)

<sup>11</sup> Jagger, S., Private Communication on SMEDIS input data for UDM (1998)

<sup>12</sup> McFarlane, K., Prothero, A., Puttock, J.S., Roberts, P.T. and Witlox, H.W.M, "Development and validation of atmospheric dispersion models for ideal gases and hydrogen fluoride" Report TNER.90.015 (non-confidential), Thornton Research Centre, Shell Research, Chester, England (1990)

<sup>13</sup> Woodward, J.L. Memorandum 775. "Model Validation for PHAST and SAFETI." 3/10/92

<sup>14</sup> McFarlane, K., Prothero, A., Puttock, J.S., Roberts, P.T., and Witlox, H.W.M., "Development and validation of atmospheric dispersion models for ideal gases and hydrogen fluoride", Part I: Technical Reference Manual, Shell Report TNER.90.015, Thornton Research Centre (1990)

<sup>15</sup> Nielsen, M. and Ott, S., "FLADIS field experiments", Final report Risø-R-898(EN), Risø National Laboratory, Roskilde, Denmark, July 1996 (1996)

<sup>16</sup> Witlox, H.W.M., and Fernandez, M., "Atmospheric expansion modelling – literature review, model refinement and validation", Report no. 984B0034 (2015)

<sup>17</sup> Schatzmann, M., Snyder, W.H. and Lawson, R.E. "Experiments with heavy gas jets in laminar and turbulent crossflows," Atmospheric Environment. Part A. General Topics, vol. 27, p. 1105–1116, 5 1993.

<sup>18</sup> Donat, J. "Wind tunnel experiments on the propagation of heavy gas jets (PhD Thesis)," Meteorological Institute, University of Hamburg, Centre for Marine and Climate Research, Hamburg, 1996

<sup>19</sup> C. Vidali, M. Marro, L. Gostiaux, H. Correia, S. Jallais, D. Houssin, E. Vyazmina and P. Salizzoni, "Atmospheric

dispersion of heavy gas and passive scalar emission from elevated source" 2019 <sup>20</sup> P. Quillatre, "Relevance of the current modelling methods for the prediction of LNG vapour dispersion and

development to be carried on," Hazards 27, 2017

<sup>21</sup> Evans, J.A., and Graham, I., "Experiments to study flow and dispersion for releases of dense phase carbon dioxide", Confidential report by Advantica for BP (2007)

<sup>22</sup> Allason, D. and Armstrong, k., "Liquid and supercritical carbon dioxide release and dispersion experiments on behalf of Shell International Exploration and Production BV", GL Noble Denton Report 10793, Spadeadam Test Site, Gisland, Cumbria, UK (2011)

<sup>23</sup> Hanna, S.R and Chang, J.C., "New MDA database version of Kit Fox", Provided as part of official CD together with overall Kit Fox report by Hanna, Chang and Briggs, "Dense gas dispersion model modifications and evaluations using the Kit Fox Field Observations". Report P011F by Hanna Consultants, 3911 Carolyn Ave, Fairfax, VA22031, prepared for the American Petroleum Institute, 1220 L Street, NW, Washington, DC (1999)

<sup>24</sup> Mazzola T., Hanna S., Chang J., Bradley S., Meris R., Simpson S., Miner S., Gant S., Weil J., Harper M., Nikmo J., Kukkonen J., Lacome J.-M., Nibart M., Bjornham O., Khajehnajafi S., Habib K., Armand P., Bauer T., Fabbri L., Spicer T., Ek N. "Results of comparisons of the predictions of 17 dense gas dispersion models with observations from the Jack Rabbit II chlorine field experiment" Atmospheric Environment 244 (2021) 117887

<sup>25</sup> J. R. Stewart, S. Coldrick, S. E. Gant and M. J. Ivings, "Validation database for evaluating vapour dispersion models for safety analysis of LNG facilities, Guide to the LNG model validation database Version 12" Health & Safety Laboratory, 2016.

DNV | digital@dnv.com | dnv.com/digital



<sup>26</sup> M. J. Ivings, S. E. Gant, S. F. Jagger, C. J. Lea, J. R. Stewart and D. M. Webber, "Evaluating vapour dispersion models for safety analysis of LNG facilities," Health & Safety Laboratory, 2016

<sup>27</sup> Witlox, H.W.M., "Data review and Phast analysis (discharge and atmospheric dispersion) for BP DF1 CO<sub>2</sub> experiments", Contract 96000056 for DNV (CO2PIPETRANS Phase 2 JIP WP1), DNV, London, UK (2012)

<sup>28</sup> Witlox, H.W.M., "Data review and Phast analysis (discharge and atmospheric dispersion) for Shell CO<sub>2</sub> experiments", Contract 984C0004 for DNV (CO2PIPETRANS Phase 2 JIP WP1), DNV, London, UK (2012)

<sup>29</sup> J. McQuaid and B. Roebuck, "Large Scale Field Trials on Dense Vapour Dispersion. Final Report to Sponsors on the Heavy Gas Dispersion Reials at Thorney Island 1982-1984," Health & Safety Executive, 1985.