

Al for turbine interactions

Testing the intelligence of CFD.ML

Karol Mitraszewski, Tom Levick, Jim Bleeg, Christiane Montavon, Miguel Fernandes WindEurope Technology Workshop, Lyon, 2nd June 2023

WHEN TRUST MATTERS

Agenda

- What's under the hood of CFD.ML
- Validation
- Planned model improvements

Is CFD.ML an AI black box?

DNV builds trust around it through:

✓ Transparent documentation, \checkmark Carefull validation, ✓ And application within the training set envelope.

What is CFD.ML?

CFD

DNV's CFD RANS modelling of wind farm flows.

The highest fidelity modeling applied at scale in wind farm energy production assessments.

ML

Machine learning model based on graph neural networks.

CFD.ML

modeling.

Fast enough to use in wind farm optimization context.

A surrogate model for **RANS CFD** applied to turbine interaction

Captures flow physics better than engineering wake models

What's a graph neural network?

Graph neural network:

- is well suited to learning physical interaction • between objects
- allows for varying number of inputs (turbines)
- is order invariant

Graph vertices = objects (turbines)

Graph edges = relationships between objects (wakes)

calculation of wake impacts coming from all neighbors as function of:

- downwind and crosswind distance to the sender
- Ct, rotor and hub-height of the sender

PAPER • OPEN ACCESS Interaction Loss

To cite this article: James Bleeg 2020 J. Phys.: Conf. Ser. 1618 062054

Aggregate all impacts on the i-th turbine

A Graph Neural Network Surrogate Model for the Prediction of Turbine

The GNN predicts wind speed deficits at the i-th turbine caused by wake & blockage.

DNV AI assurance experts have evaluated:

the model

the training setup

Both seem robust, a scientific paper is pending

What is CFD.ML trained on?

- A healthy mix of turbine technology, farm size, array density etc.
- CFD.ML's offshore training set grows continuously (41 farms currently)
- Currently, the training is based conventional neutral boundary layer capped with an inversion starting at about 600 m and a stably stratified free atmosphere above.
- Soon to be updated with improved CFD modeling method to account better for (varying) stability effects
- There's a separate training set onshore and in the future there might be GNNs dedicated to specific applications (regional/technological/meteorological)

The CFD.ML training set, offshore GNN

Agenda

- What's under the hood of CFD.ML
- Validation
- Planned model improvements

Can CFD.ML replicate CFD?

CFD.ML

Array efficiency

- **RANS CFD.**
- Is fast, may be used in an optimization context.

Validation against operational data - the three key aspects of a turbine interaction model

wind farm blockage

Validation against operational data - internal wakes

PAPER • OPEN ACCESS Validating the next generation of turbine interaction models	Mean bias over time stamps N	$MBE_{P} = \frac{\sum_{i=1}^{n} \Delta P_{i}}{N}$
T Levick ¹ , A Neubert ² , D Friggo ³ , P Downes ¹ , R Ruisi ¹ and J Bleeg ¹ Published under licence by JOP Publishing Ltd	Relative mean bias	MDE
Journal of Physics: Conference Series, Volume 2257, WindEurope Annual Event 2022, 5-7 April 2022, Bilbao,	over time stamps N	$rMBE_{D} = \frac{MBE_{P}}{mBE_{D}}$
Spain		\bar{P}
Citation T Levick et al 2022 J. Phys.: Conf. Ser. 2257 012010		

Wind Farm

- 6 offshore wind farms, validation focussed on internal wakes
- CFD.ML's validation points to a slight overprediction of (internal) wakes

		S1	M1	L1	L2	XL1	XL2
Model	SEVM	0.0	0.0	-1.9	-0.5	0.5	0.8
	CFD.ML	-0.7	-0.9	-2.0	-2.0	-0.7	3.0
	wfEV 120D (newa)	-0.8	-1.9	-0.9		0.3	
	wfEV 120D (wti)	-0.9	-1.8	-1.7	-0.9	-2.0	0.3
	wfPARK	-2.5	-5.2	-7.3	-2.9	-8.0	1.2

for each time stamp

Bias in power output $\Delta P = P_{\text{modelled}} - P_{\text{measured}}$

Validation against operational data - internal wakes Model CFD.ML

wfEVwti 120D

PAPER • OPEN ACCESS Validating the next generation of turbine interaction models T Levick¹, A Neubert², D Friggo³, P Downes¹, R Ruisi¹ and J Bleeg¹ Published under licence by IOP Publishing Ltd

Journal of Physics: Conference Series, Volume 2257, WindEurope Annual Event 2022, 5-7 April 2022, Bilbao

Citation T Levick et al 2022 J. Phys.: Conf. Ser. 2257 012010

- 6 offshore wind farms, validation focussed on internal wakes
- CFD.ML's validation points to a slight overprediction of (internal) wakes
- CFD.ML's error spread is smaller than in the case of engineering models in 5/6 wind farms – better predictions of production patterns

Spain

Turbine-by-turbine relative mean bias distribution per farm [%] **M1** -7.5 -5.0 -2.5 0.0 rMBE [%] -10.0 25 50 7.5 10 0 _2 -7.5 -5.0 -2.5 0.0 2.5 5.0 -10.0 7.5 XL2 -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 rMBE [% DNV

mean of the row

the

t

^{ower} output relative

- A large offshore windfarm
- Relative power output variations along the front row
- Flowcases shown have a long fetch and no neighboring wakes.
- 20deg bins, no filter on stability in data
- Boxes entail 50% of data, outer whiskers entail 90% of data, centerline is the median

CFD.ML neutral SCADA data

mean of the row

the

t

^{ower} output relative

- A large offshore windfarm
- Relative power output variations along the front row
- Flowcases shown have a long fetch and no neighboring wakes.
- 20deg bins, no filter on stability in data
- Boxes entail 50% of data, outer whiskers entail 90% of data, centerline is the CFD.ML neutral SCADA data median

80.0 deg. 1.3 1.2 1.1 1.0 0.9 8.0 18135 records 0.7

1.3

- A large offshore windfarm
- Relative power output variations along the front row
- Flowcases shown have a long fetch and no neighboring wakes.
- 20deg bins, no filter on stability in data
- Boxes entail 50% of data, outer whiskers entail 90% of data, centerline is the CFD.ML neutral SCADA data median

mean of the row ^{ower} output relative the **t**

1.2 1.1 1.0 0.9 0.8 32240 records 0.7

Turbine positions along the front-row

100.0 deg.

mean of the row

the

t

^oower output relative

- A large offshore windfarm
- Relative power output variations along the front row
- Flowcases shown have a long fetch and no neighboring wakes.
- 20deg bins, no filter on stability in data
- Boxes entail 50% of data, outer whiskers entail 90% of data, centerline is the _____ c median _____ s

CFD.ML neutral
SCADA data

mean of the row

the

t

^Dower output relative

- A large offshore windfarm
- Relative power output variations along the front row
- Flowcases shown have a long fetch and no neighboring wakes.
- 20deg bins, no filter on stability in data
- Boxes entail 50% of data, outer whiskers entail 90% of data, centerline is the _____c median _____s

CFD.ML neutral
 SCADA data

mean of the row

the

t

^oower output relative

- A large offshore windfarm
- Relative power output variations along the front row
- Flowcases shown have a long fetch and no neighboring wakes.
- 20deg bins, no filter on stability in data
- Boxes entail 50% of data, outer whiskers entail 90% of data, centerline is the CFD.ML neutral SCADA data median

220.0 deg. 1.3 1.2 1.1 1.0 0.9 0.8 30380 records 0.7

mean of the row

the

t

^oower output relative

- A large offshore windfarm
- Relative power output variations along the front row
- Flowcases shown have a long fetch and no neighboring wakes.
- 20deg bins, no filter on stability in data
- Boxes entail 50% of data, outer whiskers entail 90% of data, centerline is the median

CFD.ML neutral SCADA data

mean of the row

the

5

^oower output relative

- A large offshore windfarm
- Relative power output variations along the front row
- Flowcases shown have a long fetch and no neighboring wakes.
- 20deg bins, no filter on stability in data
- Boxes entail 50% of data, outer whiskers entail 90% of data, centerline is the median

CFD.ML neutral SCADA data

mean of the row

the

t

^ower output relative

- A large offshore windfarm
- Relative power output variations along the front row
- Flowcases shown have a long fetch and no neighboring wakes.
- 20deg bins, no filter on stability in data
- Boxes entail 50% of data, outer whiskers entail 90% of data, centerline is the CFD.ML neutral SCADA data median

340.0 deg. 1.3 1.2 1.11.0 0.9 **CFD.ML** neutral is capturing the blockage-induced flow 0.8 field variations quite well! 22940 records 0.7

Validation against operational data - *cluster wakes*

Validation against operational data - cluster wakes

- 5 deg directional bins, 1 m/s wind speed bin, no data filtering on stability
- Boxes entail 50% of data, outer whiskers entail 90% of data, centerline is the **median**
- **CFD.ML neutral fails to capture the amplitude of the signal** (underprediction of cluster wakes).

CFD.ML neutral

SCADA data

WINDEUROPE TECH WORKSHOP, LYON, 02-06-2023

Wind direction

Validation against operational data

- cluster wakes
- 5 deg directional bins, no data filtering on stability
- Boxes entail 50% of data, outer whiskers _ entail 90% of data, centerline is the median
- **CFD.ML** neutral fails to capture the amplitude of the signal (underprediction of cluster wakes).
- **CFD.ML** stable does a better job. It is a 50/50 blend of predictions from a neutralonly gnn and a gnn trained on neutral&stable CFD sims. It's an experimental approach.
- This prompted refinements in the underlying CFD model...

CFD.ML neutral CFD.ML stable SCADA data

two corner turbines

Power ratio of

Wind direction

Agenda

- What's under the hood of CFD.ML
- Validation
- Planned model improvements

Work in progress: Validation of the improved CFD model

- Efforts at DNV to further improve the predictive skill of our CFD model.
- Promising research direction:
 WRF-informed boundary conditions in the CFD simulations.
- Good outcome of a validation against SCADA data and LiDAR measurements at a a large German offshore cluster, measurements.

C. Montavon et al "Blockage and cluster-tocluster interactions from dual scanning lidar measurements", WESC 2023, Glasgow

DNV

Work in progress: Validation of the improved CFD model

- Directions where the measurements along the (dual-scanning) lidar lines are affected by both blockage AND wakes from neighbouring clusters
 - Example from direction 271°
 - Unstable conditions
 - Wind speed on the plateau of the thrust curve
 - Upstream farm 5km

Pattern of production (253° -283°), unstable

Turbine labe

Pattern of production (253° -283°), stable

Summary

- CFD.ML has the potential to become the **next** generation, fast-turnaround turbine interaction **model** when applied stand-alone in energy production assessments of wind farms.
- DNV is working towards that goal through model improvements and validation
- CFD.ML cloud API is available to selected partners in private preview mode and will be soon available through DNV's WindFarmer: Analyst.
- Already now CFD.ML can be used to:
 - (cautiously) predict blockage & wakes
 - identify cases lying outside the operational envelope of traditional models
 - interpolate between discrete CFD simulations

Next generation turbine interaction models (CFD.ML)

Thank you

karol.mitraszewski@dnv.com, tom.levick@dnv.com

www.dnv.com

WINDEUROPE TECH WORKSHOP, LYON, 02-06-2023

WHEN TRUST MATTERS

