DNV·GL

ENERGY

Improving confidence in wake predictions through operational validations

Wind Europe Offshore 2017

Taylor Geer6 JUNE 2017

Outline

What have we learn so far when trying to validate wakes

How can we relate this to offshore?

What is next for wake modelling

What have we learn so far when trying to validate wakes

- Challenges
- The validations undertaken so far and lessons learnt
- What we currently use onshore

Challenges

Validations: Onshore project with stability – All atmospheric conditions

DNV.GL

Validations: Onshore project with stability – Neutral conditions

Validations: Onshore project with stability – Stable conditions

Validations: Onshore project with stability – Stable conditions

Validations: Onshore project with stability – All atmospheric conditions

What we currently use onshore- DNV GL

How are we doing offshore?

- What is the current practice
- What are we doing this year
- The future...

What is the current practice

limited validation has been conducted.

 Each method was initially calibrated using the Horn Rev data

Why use an ensemble method? • With limited validation, minimizes potential for bias.

What will we do this year

- Fine-tuning parameters improvement by validation
 - Validate/improve offshore wake approach
 - Improved characterization of site roughness
 - Quantify frequency of stable flow
 - Adjust Large Wind Farm roughness parameter to reflect site-specific atmospheric conditions
- Validating time-series modelling
 - Wind shear & turbine performance
 - Stable & neutral wind flow (DNV GL CFD/VMD)
 - Stable & neutral wakes (WindFarmer)
 - Assess time-value of production, hedge risk,

integration considerations

What are we doing this year? Extending offshore validation cases!

New project!	 Has not been used to calibrate the wake model
Wind Direction	 Limited validation to direction band to maximize waked rows (6 rows)
Wind speeds	 From 6 m/s to 10 m/s considered Wind speeds determined from average of nacelle anemometers in first row of turbines.
Running WindFarmer in " Time series "	 Each 10 minute time stamp has a unique wind speed, TI, air density, and wind direction

Offshore validation case – default WindFarmer "Offshore Settings"

15 DNV GL © 2014 6 June 2017

Overall wake validation looks very good! (<0.3% deviation)

No obvious trend by row

Only one validation, and only a medium sized project

Time series energy modelling shows promise (next test will be onshore with large stability swings)

Very promising first results indicating ensemble approach may not be necessary

What is next for wake modelling

Next Generation: 3D Wake Modeling

- Consider asymmetric solutions
 - Vertical shear profile
 - Boundary layer interactions
- Explicitly model wake superposition

What have we learn so far when trying to validate wakes	 Need to use good CFD to decrease wind flow model error Need to account different atmospheric conditions Need to look at time series validation
What is our proposed methodology to validate wakes	 SCADA based time series validation CFD wind flow modelling considering different atmospheric conditions
What is next for wake modelling	 3D CFD wake modelling Consider asymmetric solutions Explicitly model wake superposition Fully coupled Mesoscale+CFD+Wake

Thank you

With thanks to: Anja Neubert, Marie-Anne Cowan, Tom Levick, Melissa Elkinton, Carl Ostridge, Carla Ribeiro, Christian Peake, Jim Bleeg, et al

Taylor Geertaylor.geer@dnvgl.com@taylorgeer1

www.dnvgl.com

SAFER, SMARTER, GREENER