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Overview

• The problem of modelling long-range wakes and background

• High fidelity modelling solutions

• Retraining CFD.ML

• Verification against CFD

• Validation against SCADA
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Long range wakes

• Wind farm wakes significantly impact AEP, 

and propagate significant distances.

• We are designing bigger future projects 

• Bigger turbines!

• More turbines in each farm!

• Large clusters of wind farms!

• There is significant uncertainty predicting 

long-range wakes of tomorrow’s projects 

prediction using engineering models 

validated against older wind farms.
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Wakes seen from space… 

SAR image in the German Bight

https://apps.sentinel-hub.com/eo-browser/?zoom=10&lat=54.32934&lng=6.07681&themeId=DEFAULT-THEME&visualizationUrl=https%3A%2F%2Fservices.sentinel-hub.com%2Fogc%2Fwms%2Ff2068f4f-3c75-42cf-84a1-42948340a846&datasetId=S1_AWS_IW_VVVH&fromTime=2019-02-20T00%3A00%3A00.000Z&toTime=2019-02-20T23%3A59%3A59.999Z&layerId=IW-DV-VV-DECIBEL-GAMMA0&demSource3D=%22MAPZEN%22


DNV © Sources: DNV, EnBW Blockage and cluster-to-cluster interactions from dual scanning lidar measurements

WRF-to-CFD provides a high-fidelity solution

DNV’s WRF-to-CFD high fidelity modelling avoids assumptions inherent in engineering models, 

simulating wind farm wakes across a range of atmospheric conditions.

Wakes in the stable atmosphere generally appear stronger and longer.

Unstable atmosphere. Stable atmosphere. 

https://myworkspace.dnv.com/download/public/renewables/windfarmer/docs/CMontavon_et_al_Blockage_Cluster_interactions_from_dual_scanning_lidars_DNV_EnBW_WESC2023.pdf
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• Mesoscale WRF model:
• 4 nested domains: 1600 km to 60 km
• Vertical levels : 41 overall (up to 19.3 km)
• Driven by ERA-5 reanalysis
• Informs boundary conditions for CFD

• Microscale CFD model:
• 1 domain: 60 km horizontal, 17 km vertical
• Horizontal cells ranging from 4 m to 200 m
• Steady state RANS (k-e, modified constants)
• Transport equation for potential temperature
• Turbines via actuator disk
• Discrete set of directions (steps of 10°)

WRF=Weather Research and Forecasting

CFD=Computational fluid dynamics

Numerical simulation models setup (WRF-to-
CFD)



DNV ©

But RANS CFD is computationally intensive…

It is a good idea to apply high fidelity modelling at some stage in the project to understand 
impacts of site-specific atmospheric conditions.

The challenge is how to consider these impacts when:

• Performing wind farm design optimisation, assessing 1000s of layouts

• Where this is little budget at early stages of project development

• To assess the impact of small changes to the project
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Introducing CFD.ML
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WRF-to-CFD

DNV’s WRF-to-CFD 

RANS modelling of wind 

farm flows.

The highest fidelity 

modeling applied at scale 

in wind farm energy 

production assessments.

A.I.

Machine learning model 

based on graph neural 

networks.

CFD.ML

A surrogate model for 

RANS CFD applied to 

turbine interaction 

modeling.

Fast enough to use in wind 

farm optimization context.

Captures flow physics 

better than engineering 

wake models

no up-front tuning to 

SCADA
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What’s a graph neural network?
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Graph neural network: 

• is well suited to learning physical interaction 

between objects

• allows for varying number of inputs (turbines)

• is order invariant

The GNN predicts 

wind speed deficits

at the i-th turbine

caused by wake & 

blockage.

Graph vertices = 

objects (turbines)

Graph edges = relationships 

between objects (wakes)

calculation of wake impacts 

coming from all neighbors as 

function of:

• downwind and crosswind 

distance to the sender

• Ct, rotor and hub-height of 

the sender

Aggregate all impacts on 

the i-th turbine
DNV AI assurance experts 

have evaluated:

- the model 

- the training setup 

Both seem robust, a 

scientific paper is pending
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AI model development process

Train & Test

• We train the GNN 
“brain” of CFD.ML to 
replicate the Turbine 
Interaction Loss Factors 
predicted by CFD

Verify

• We verify the new 
model against CFD 
data held completely 
outside the training and 
test data

Validate

• Against real world 
measurements (e.g. 
SCADA power)
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2023 CFD.ML Validation 
- underprediction of 
cluster wakes

V1 CFD.ML, trained on only offshore 
neutral atmospheric conditions 

• predicted blockage and internal wake 

impacts quite well 

• fails to capture the cluster wake impact

(right)

…but CFD.ML has learnt a lot since last 
year! 
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https://myworkspace.dnv.com/download/public/renewables/windfarmer/docs/AI for turbine interactions - WindEuropeTech 2023_ver30.05.pdf
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Vertical profiles of 

potential temperature 

and turbulent kinetic 

energy differ greatly in 

stable and unstable 

atmospheric conditions. 

These profiles drive 

mixing in the 

atmosphere, how 

momentum is transferred 

from above, hence how 

fast wakes recover.
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• ΔΘ𝑖𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛

ΔΘ

Δ𝑧
inversion

• Boundary layer height

• Uhub

• Hub height

• TIhub

•
dV

𝑑𝑧
ℎ𝑢𝑏

• X, Y

• Wind direction

• Rotor diameter

• Ct

• Coriolis parameter 

(Latitude)

• TItop

•
dV

𝑑𝑧
top

•
ΔΘ

Δ𝑧
𝐿𝑎𝑝𝑠𝑒 𝑟𝑎𝑡𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑟𝑒𝑒 𝑎𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑒

• Inputs included in the 2023 model

• Expanded inputs in the latest model

•
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Training data

The CFD.ML V2 includes onshore and 

offshore wind farms across the full range of 

project sizes. A significant increase above 

the V1 training data.

Wind farms

Atmospheric conditions

1 distinct case in 

training set

Multi-stability 

CFD.ML is 

trained against a 

full spectrum of 

atmospheric 

conditions

Windfarms 119 

of which onshore 79

of which offshore 40

Turbines in wind farms 16,414 

Simulation cases 2,620 

Turbines simulated 71,579 

Pairwise interactions 252,679,536 

https://myworkspace.dnv.com/download/public/renewables/windfarmer/manuals/latest/CalcRef/TurbineInteractions/CFDML/CFDML.html#overview-of-the-training-set
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Verification of CFD.ML against CFD - Hose-Albatros
Wind speed turbine interaction loss factors in Unstable conditions
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251 degrees

251 degrees

Across the wider cluster CFD.ML 
captures the CFD pattern of 
production, for all wind directions 
despite never having been 
trained on this cluster.

Sources: 
DNV, EnBW
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Stable and unstable CFD at Hohe-See+Albatros

Unstable atmosphere. Stable atmosphere. 

Looking at the front row turbines, that are half waked…

https://myworkspace.dnv.com/download/public/renewables/windfarmer/docs/CMontavon_et_al_Blockage_Cluster_interactions_from_dual_scanning_lidars_DNV_EnBW_WESC2023.pdf
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Stable and unstable CFD at Hohe-See+Albatros

Unstable atmosphere. Stable atmosphere. 

Looking at the front row turbines, that are half waked…

https://myworkspace.dnv.com/download/public/renewables/windfarmer/docs/CMontavon_et_al_Blockage_Cluster_interactions_from_dual_scanning_lidars_DNV_EnBW_WESC2023.pdf


DNV ©

Sources: 
DNV, EnBW

Front row PoP at Hohe-See+Albatros: CFD vs SCADA

Plots show 253° to 283°

bin average of front row 

turbines.

• Removed turbines with 

<0.95% availability

• Normalised to front 

row average power

CFD resolves the pattern of production 

extremely well. 
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Sources: 
DNV, EnBW

Front row PoP at Hohe-See+Albatros: CFD.ML vs.CFD vs.SCADA

Plots show 253° to 283°

bin average of front row 

turbines.

• Removed turbines with 

<0.95% availability

• Normalised to front 

row average power

33% 20 %

CFD.ML captures the difference in power

trend well due to different atmospheric 

conditions, despite never having seen this 

cluster in the model training. 
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Validation against operational data
- cluster wakes measured via corner turbine power differences 
- revisiting 2023 case

Normalised power difference =[P (TA) – P (TB)] / 0.5 [P (TA) + P (TB)]
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Corner turbines 
normalised power 
difference by direction
Modelled data

• Gaumond averaging applied to by-direction modelled 

results

• 𝜎 = 3 for stable CFD.ML

• 𝜎 = 5 for unstable CFD.ML

• Note, some uncertainty in the choice of 𝜎

• Direction offset +13

• Reference wind speed on thrust curve plateau: 8 m/s    

SCADA: 

• Wind speed: 7.5 to 8.5 m/s

• 5-degree direction bins

• Stability split by Monin-Obukhov Length (MOL) from Vortex 

series

• Unstable + Neutral = MOL < −50 or MOL > 500

• Stable = 10 < MOL ≤ 500

Normalised power difference = 

[P (TA) – P (TB)]  / 0.5 [P (TA) + P (TB)]
20
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Corner turbines normalised power difference by 
direction – all data

• CFD.ML overall from 

weighted average of predicted 

stable / unstable Gaumond

averaged powers: 41% stable

• For wfEV+LWF and 

TurbOPark

• TI = 5.3 %

• 𝜎 = 4 for Gaumond average

• All models

• Reference speed ~8 m/s

• Direction offset +13
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Summary

• Continued and expanded training has 

improved the WindFarmer CFD.ML 

model’s ability to model offshore long-

range wakes, across a range of 

atmospheric conditions

• CFD.ML v2 predicted stronger long-range 

wakes than WindFarmer’s eddy viscosity + 

LWF model at our test site.

• Note this is one wind speed, integration over all 

speeds for AEP may show less discrepancy.

Next steps 

• Defining the process for creating the 

atmospheric conditions inputs

• Regional input pre-sets will allow a 

straightforward analysis, but more accuracy likely 

when using inputs customised for your project.

• Repeat previous validations for internal 

wakes and blockage using WindFarmer 

CFD.ML v2

You can get access to WindFarmer’s 

CFD.ML via the WindFarmer web API

• v1 available now

• v2 release planned during summer 2024

• Contact us at windfarmer@dnv.com

22
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www.dnv.com

Find out more
https://www.dnv.com/software/services/windfarmer/
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WindFarmer@dnv.com

https://www.dnv.com/software/services/windfarmer/
mailto:windfarmer@dnv.com
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